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Organocatalytic atroposelective N-alkylation: divergent synthesis 
of axially chiral sulfonamides and biaryl amino phenols 

Xiao Xiao,a Yin-Jie Lu,a Hong-Yu Tian,a Hai-Jie Zhou,a Jia-Wei Li,a Yi-Ping Yao,a Miao-Lin Ke,a Fen-Er 
Chen* a,b,c 

Axial chirality exists ubiquitously in numerous natural products and has been extensively recognized for decades in 

pharmaceuticals and enantioselective transformations. The development of efficient methodologies to obtain enantiopure 

structures bearing either a C-N or C–C axially chiral entity remains highly desired and sought after. Herein, a practical and 

universal organocatalytic atroposelective N-alkylation has been developed to efficiently access sulfonamides containing an 

allene or allyl entity. Furthermore, this process has also enabled a selective N–H activation in the subsequent transformation 

towards functionalized sulfonamides, and realized the kinetic resolution of NOBIN analogues to afford chiral catalyst 

precursors. The racemization experiments show that substituted allenoate-sulfonamides possess higher rotational barriers 

than corresponding acrylate-sulfonamides. This divergent synthetic procedure can be facilely scaled up and bode well for its 

wide applications in enantioselective synthesis. 

Introduction  

The significance of atropoisomerism as a chiral unit can be 

exemplified in its ubiquity in a variety of natural products and 

pharmaceuticals, together with its extensive use as chiral 

organocatalysts/ligands in asymmetric catalysis.1 Since its 

discovery in 1922,2 atropoisomerism has been a cutting-edge 

field and witnessed enormous advances in its construction. 

Among the different types of axially chiral compounds, biaryls 

possessing hindered rotation can be identified as the most 

recognized form. Notably, axially chiral 2-amino-2'-hydroxy 

binaphthyl (NOBIN) scaffolds have been extensively utilized as 

privileged catalysts and ligands in enantioselective catalysis,3a-e 

and can be found in natural products such as proteasome 

inhibitors TMC-95A–D3f,g (Fig. 1a). In comparison with the 

numerous methods developed for the construction of optically 

pure BINOL and its derivatives, asymmetric catalytic processes 

for the formation of chiral NOBIN-type biaryls are still 

underdeveloped. Existing procedures in the form of classical 

resolution4, conventional oxidative coupling of two aryl 

synthons5, kinetic resolution6, and enantioselective 

transformation7, often require either stoichiometric amounts of 

chiral reagents or extra steps for the preparation of the 

catalysts. In view of the importance of chiral NOBIN analogs and 

its limited synthetic routes, the development of both a general 

and practical methodology to access these enantiopure 

structures is highly desired. 

Apart from the flourishing development of biaryls consisting 

of an atropoisomeric C–C bond, non-biaryl C–N axially chiral 

scaffolds which possess appealing medicinal and agricultural 

activities are also promising structural motifs that have 

attracted considerable attention from the chemistry and 

pharmaceutical communities.8 Amongst them, efforts focused 

towards the construction of axially chiral sulfonamides have 

bloomed in recent years due to their utilities in the treatment 

of pain (Fig. 1b, left).8d Documented attempts include tertiary-

amine-catalyzed N-alkylation,6d isothiourea-catalyzed 

N-acylation,9 and Pd-catalyzed N-allylation10. Since the 

development of Pd-catalyzed N-allylation strategy to access 

chiral anilides pioneered by Taguchi11 and Curran12, the N-

alkylation strategy has become a mainstream method to 

construct the C–N axially chiral entities.6d,8e,13 Notably, Zhao and 

coworkers discovered an elegant asymmetric allylic alkylation 

(AAA) reaction to access chiral sulfonamides containing an allyl 

scaffold by utilizing sulfonamides and Morita–Baylis–Hillman 

(MBH) carbonates as substrates.6d Nevertheless, more efficient 

strategies such as reducing catalyst loadings for the synthesis of 

axially chiral sulfonamides is still in high demand (Fig. 1b, right). 

Allenes on the other hand, being geometrically unique and 

synthetically versatile substructures, occupy a prominent 

position in chemical synthesis.14 At present, the construction of 

chiral allenic sulfonamides is unexplored despite its promising 

applications in many areas. 

Morita–Baylis–Hillman (MBH) carbonates have been 

developed as effective synthons to access C–N axially chiral 

scaffolds via asymmetric organocatalysis (Fig. 1c).6d,13f-i 

Mechanistically, the basicity of the tert-butoxide anion released 

from the OBoc carbonate produced by the MBH carbonate is 

too strong to differentiate and selectively deprotonate different 

types of N–H bonds (Fig. 1d).15 Therefore, this selective 

transformation to access axially chiral sulfonamides in 

compounds possessing different type of N–H bonds, such as the 

precursor for the formation of UK-240455, is much more 

difficult to realize. With reference to the pKa value table, the N–

H bond of sulfonamides is more acidic than those of  
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Figure 1. From inspiration to reaction design. 
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Table 1. Optimization of enantioselective N-alkylationa
 

 

Entry Cat. Base Solvent Temp. (oC) Yield (%)b ee (%)c 

1 A - PhMe 24 71 51 

2 B - PhMe 24 75 21 

3 C - PhMe 24 63 15 

4 D - PhMe 24 67 -27 

5 E - PhMe 24 85 -17 

6 A - Mesitylene 24 84 72 

7d A - Mesitylene 24 83 79 

8d A - Mesitylene -20 9 88 

9d A Cs2CO3 Mesitylene -20 91 84 

10d A Cs2CO3 Mesitylene -40 92 89 

11d A K2CO3 Mesitylene -40 73 88 

12d A Na2CO3 Mesitylene -40 61 89 

13d A KHCO3 Mesitylene -40 35 83 

14d A K3PO4 Mesitylene -40 31 89 

15d A Cs2CO3 Mesitylene -50 92 (91)e 90 

aUnless noted otherwise, the reactions were performed with 1a (0.05 

mmol, 1.0 equiv.), 2a (0.07 mmol, 1.4 equiv.), catalyst (10 mol%), and 

base (1.0 equiv.) in solvent (0.5 mL) at 24 to -50 oC for 12 h. bYield 

was detected by 1H-NMR. cThe ee value was determined by chiral 

HPLC. dMesitylene (4 mL) was added. eIsolated yield. Tol = 4-MeC6H4. 

phosphamides and amides, which can enable selective N–H 

activation using appropriate substrates and base.16 Therefore, 

to distinguish different N–H bonds and introduce selective 

deprotonation, a less basic acetate anion liberated from the 

corresponding MBH acetate under the catalytic conditions was 

hypothesized to be a better matched substrate. In particular, 

the N–H bond of sulfonamide can enable selective N–H 

activation using appropriate substrates and base.16 Therefore, 

to distinguish different N–H bonds and introduce selective 

deprotonation, a less basic acetate anion liberated from the 

corresponding MBH acetate under the catalytic conditions was 

hypothesized to be a better matched substrate. In particular, 

the N–H bond of sulfonamide can be deprotonated by the 

carbonate/phosphate anion, while the N–H bond of 

phosphamides and amides would remain untouched. 

Therefore, the cooperation of MBH acetate with carbonate or 

phosphate anion could enable the selective N–H activation with 

the assistance of organocatalysis.17 

Herein, we disclosed a universal and practical catalytic 

procedure to synthesize axially chiral sulfonamides bearing an 

allene or allyl unit, and achieved the kinetic resolution of NOBIN 

analogues to furnish chiral catalyst precursors (Fig. 1e). This 

highly efficient and practical method utilizes readily available 

reagents/catalysts, realizes selective N–H activation and be 

facilely scaled up. 

Results and discussion 
We commenced our development of an allene-functionalized N-

alkylation process by exploring a range of organocatalyst in the 

presence of multi-substituted sulfonamide 1a, 2-

(acetoxymethyl)buta-2,3-dienoate 2a, and in the presence of cesium 

carbonate base. In an effort to achieve this enantioselective 

transformation, a variety of phosphine catalysts were first screened, 

albeit with low ee values obtained (for details, please see the page 3 

of SI).15c,18 To our delight, further screening with the use of chiral 

amine catalysts afforded moderate enantioselectivities with toluene 

as the solvent at 24 oC (Table 1, entries 1-5), in which β-ICD was the 

best catalyst displaying the highest enantioselectivity (Table 1, entry 

1). Solvent optimization conferred the desired product 3a in 84% 

yield and with 72% ee in mesitylene (Table 1, entry 6; for details, 

please see the page 7 of SI). Decreasing the reaction concentration 

was found to increase the enantioselectivity (Table 1, entry 7). When 

the temperature was decreased to -20 oC, the ee value could be 

improved to 88%, but with a sharp decrease in yield (Table 1, entry 

8). Subsequently, Cs2CO3 was loaded into the reaction and led to a 

much-improved reactivity and enantioselectivity (84% ee, 91% yield, 

Table 1, entry 9), which was utilized to promote the nucleophilicity 

of sulfonamide by deprotonating the N–H bond to generate the 

anionic species. A further decrease in temperature to -40 oC led to 

the product 3a in 92% yield with 89% ee. Importantly, the base 

screening process demonstrated that Cs2CO3 was the best base to 

achieve the highest enantioselectivity and reactivity (Table 1, entries 

10-14). Ultimately, when the temperature was decreased to -50 oC, 

the chiral compound 3a was formed in 92% yield and 90% ee (Table 

1, entry 15). 
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Table 2. Scope of axially chiral sulfonamides from allenoatesa,b,c 

 
aUnless noted otherwise, the reactions were performed with 1 

(0.05 mmol), 2 (0.07 mmol, 1.4 equiv.), β-ICD (10 mol%), and 

Cs2CO3 (0.05 mmol, 1.0 equiv.) in mesitylene (4 mL) at -50 oC for 

12-24 h. bIsolated yield. cThe ee value was determined by chiral 

HPLC. d72 h. e7 d. Tol = 4-MeC6H4. 

With the optimized conditions in hand, we examined the scope of 

this catalytic transformation (Table 2). The projected reaction was 

applicable to a wide range of 2,6-substituted arylsulfonamide 1 and 

2-(acetoxymethyl)buta-2,3-dienoate adducts 2. The ester group of 2-

(acetoxymethyl)buta-2,3-dienoate 2 can be changed, from Bn (3a), 

Me (3b), Et (3c), iPr (3d), nBu (3e), and tBu (3f), to benzhydryl (3g), 

with consistently excellent ee values and high yields. Apart from the 

small methyl allenoate 2b, substrates 2 bearing increased steric 

hindrance on the ester group would promote the enantioselectivity 

of product 3 despite longer reaction times (3f). Next, the 

incorporation of halide substituent on the N-aryl group was well-

tolerated to generate 3h–3k in high yields with moderate to excellent 

enantioselectivities. The decrease in steric effect of the ortho halide 

substituent on N-phenyl ring from I to Cl led to a decrease in ee 

values (3g, 3i and 3j). The substrate possessing a halide atom (I) on 

the para-position obtained the product in moderate enantios-

electivity (3k). An electron-poor aromatic substituent was also 

evaluated in this transformation and produced the desired 

product 3l in good yield and enantioselectivity. Lastly, the 

variation of the sulfonamide moiety was examined. It was found 

that substrates from the small mesyl group to a range of 

substituted aryl sulfonamides bearing both electron-

withdrawing (EWG) and electron-donating group (EDG) could 

Table 3. Scope of axially chiral sulfonamides from MBH acetatesa,b,c 

 
aUnless noted otherwise, the reactions were performed with 1 (0.1 
mmol), 4 (0.14 mmol, 1.4 equiv.), β-ICD (1 mol%), and Cs2CO3 (0.1 
mmol, 1.0 equiv.) in mesitylene (2 mL) at -30 oC for 72 h. bIsolated 
yield. cThe ee value was determined by chiral HPLC. Tol = 4-MeC6H4. 
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afford the axially chiral N-aryl sulfonamides with uniformly high 

ees (3m–3x). The single crystal X-ray analysis of 3v confirmed 

the absolute configuration of this class of compounds.19 

Table 4. Scope of axially chiral sulfonamides via selective N-H 

activationa,b,c 

 
aUnless noted otherwise, the reactions were performed with 6 

(0.05 mmol), 4c (0.07 mmol, 1.4 equiv.), β-ICD (10 mol%), 

Cs2CO3 (0.05 mmol, 1.0 equiv.) in mesitylene (3 mL) at -50 oC for 

24 h. bIsolated yield. cThe ee value was determined by chiral 

HPLC. Tol = 4-MeC6H4. 

After the successful enantioselective construction of C–N 

axial chirality in allenoate-arylsulfonamides, we were then 

curious to find out if this methodology could be extended to 

acrylate-sulfonamides. The atroposelective N-alkylation of MBH 

carbonate and sulfonamide to synthesize the axially chiral 

acrylate-sulfonamide was reported by Zhao and required a 

relatively higher catalyst loading (10 mol%). The low catalyst 

loading (1 mol%) was utilized to treat this transformation from 

sulfonamide and MBH acetate (for details, please see the page 

8 of SI). To our delight, controlling the enantioselectivity of 

atropisomeric acrylate-sulfonamides was relatively easier than 

the allenoate-sulfonamides at a higher temperature of -30 oC. 

The catalytic enantioselective N-allylic alkylation of 

sulfonamides for the atroposelective synthesis of acrylate-

sulfonamide bearing a C–N bond was then explored, and the 

results are summarized in Table 3. Notably, a variety of C–N 

axially chiral acrylate-sulfonamides containing different ester 

substituents were synthesized, and all the products were 

formed in high yields with excellent enantioselectivities (5a-5e, 

90-99% ee). Installing other halide substituents on the N-aryl 

ring did not show obvious influence on the enantioselectivity of 

the present transformation (5f-5j). The ortho substituent on N-

phenyl ring possessing an EWG group resulted in access the 

product 5k with moderate enantioselectivity. Next, several 

sulfonamide substrates were surveyed. Notably, the 

substituents on sulfonamide group could be varied, from 

aliphatic groups (5l-5n), to aromatic rings bearing both EWG 

and EDG groups (5o-5u), and the corresponding products could 

be obtained in high yields with excellent enantioselectivities 

(89-96% ee). 

Table 5. Scope and structural exploration of NOBINs via kinetic 

resolutiona,b,c,d 

 
aUnless noted otherwise, the reactions were performed with 10 

(0.1 mmol), 4 (0.07 mmol, 0.7 equiv.), β-ICD (3 mol%), K2CO3 

(0.035 mmol, 0.35 equiv.) in chlorobenzene (8 mL) at 0 oC for 32 

h. bIsolated yield. cThe ee value was determined by chiral HPLC. 
dConversion (C) = ee8/(ee8 + ee9), s = In[(1-C)(1-ee8)]/In(1-

C)(1+ee8)].  

Important C–N axially chiral compounds, such as NMDA antagonist 

UK-240455, possess both sulfonamide and amide units which require 

selective N–H activation strategy to construct these entities. Taking 

reference from the pKa value table,16 we envisioned that our method 

could potentially achieve this transformation, wherein the matched 

substrate and base could realize the selective N–H activation of the 

sulfonamide. To our delight, in the presence of a catalytic amount of 

β-ICD, amide 6a reacted smoothly with MBH adduct 4c to afford the 

single product 7a bearing an axial C–N bond, albeit in 71% yield and 

77% ee. This result demonstrated the difficulty in enantioselectivity 

control. The reaction temperature was then decreased to -50 oC and 

the ee value of the desired product was promoted. Notably, the 

ortho-substituted arylamides bearing both electron-donating and 

electron-withdrawing groups on N-aryl ring were well tolerated and 

the corresponding products could be afforded with moderate to high 

enantioselectivities (Table 4, 7a-7e). The analogue of UK-240455 

could not be obtained because of the extremely poor solubility of the 
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staring material (7f). The phosphamide group was also compatible in 

this conditions (7g). According to the foregoing experiments, 

controlling the enantioselectivity of allenoate-sulfonamide was more 

formidable than acrylate-sulfonamide. Predictably, the dienoate 

adduct 2 and functionalized sulfonamide 6 could transformed to the 

desired product with low efficiency and enantioselectivity (for 

details, please see the page 49 of SI, 7h and 7i). 

Considering the significance and value of NOBINs, our catalytic 

process was further applied to realize the kinetic resolution of amino 

phenol scaffolds. To achieve a more efficient approach to access 

NOBIN and its derivatives, we sought to optimize this reaction using 

low catalyst loadings and successfully realized the reaction using only 

3 mol% of β-ICD (for details, please see the page 9 of SI). Under the 

optimized reaction conditions, N-Ts substituted 8a was recovered in 

56% yield with 96% ee (Table 5). Examples 8b–8f exemplified that 

substrates bearing numerous functional groups (i.e., halogens, esters, 

and condensed ring) in different positions, could afford good to high 

levels of enantioselectivity for the N-alkylation resolution as well. 

These scaffolds were recovered in excellent enantiopurity (79–96% 

ee). Similar to the Ts-protected anilines, the Ms-protected substrates 

(8e-8f) were also exhibited high compatibilities in this resolution 

route with the same level of enantioselectivity. 

 
Figure 2. Examination of the stability of C–N axial chirality. 

For the purpose of investigating the stereochemical stability, the 

racemization experiments of these atropisomeric compounds were 

performed to obtain rotational barriers (Fig. 2). At first, compound 

3h in mesitylene was heat to 110 oC and the ee value of 3h remained 

unchanged in 5 hours. This indicated that allenoate-sulfonamide 3h 

has a high stability. We then increased the temperature to 140 oC and 

the rotation barrier (ΔGǂ) of 3h was obtained as 32.65 kcal/mol.20 We 

further tested the effect of the ortho-substituted group on 

stereochemical stability. The measured rotational energy barriers of 

3g and 3k were 34.02 and 33.88 kcal/mol, respectively. These results 

reveal that the steric resistance of the substituent on the aromatic 

ring of aniline has a great influence on the rotation energy barrier. 

The chiral substrate 3v possessing a small mesyl group obtained the 

lower rotational barrier and stability than the Ts-substituted product 

3g. Furthermore, the rotational barrier of 3b was also experimentally 

determined. In general, compound 3g appeared to be more 

configurationally stable than 3b, which showed that the allenoate 

substrate bearing an ester group with bulky steric hinderance 

possessed high stability. The racemization experiments of acrylate-

sulfonamide were subsequently carried out and the rotational 

barrier of 5a was lower than 3b because the size of vinyl was smaller 

than allenyl. Furthermore, the effect of ortho-substituted group 

bearing different types of amide on stereochemical stability was 

examined. The substituted acrylate-sulfonamide 7g bearing a 

phosphamide possessed higher rotational barrier than the amide 

units 7b/7e. 

 
Figure 3. Further transformation. 

To demonstrate the utility of our current method, the 

convenient gram-scale operations were performed to 

synthesize both the allenoate-sulfonamide 3v and acrylate-

sulfonamide 5c in high yields with excellent enantioselectivities 

(Fig. 3). Subsequent ozonization of allenoate-sulfonamide 3v 

furnished 1,2-dicarbonyl compound 10 in high efficiency. 

Alternatively, reduction of 5c with DIBAL-H smoothly led to the 

alcohol product 11. Notably, both the oxidative and reductive 

transformations occurred readily, with the high 

enantioselective retention. Furthermore, the synthesized 

axially chiral product 3v and 5c were tested as enantioselective 

iodine catalysts for the asymmetric oxidative spirolactonization 

of the phenol derivative, and the low catalytic efficiency was 

observed (for details, please see the page 71 of SI). 

Conclusions 
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In conclusion, we have developed a versatile and efficient catalytic 

process that allows the synthesis of enantiopure compounds bearing 

either a C-N or C–C axially chiral entity. In the enantioselective 

construction of C-N axial chirality, both the allenoate-sulfonamide 

and acrylate-sulfonamide were achieved in high yields and excellent 

enantioselectivities in the presence of low catalyst loadings. 

Furthermore, we have achieved a selective N-H activation to 

synthesize functionalized compounds possessing different types of 

amide units. In addition to C-N axial chirality, optically pure NOBINs 

containing C-C axial chirality can be obtained via kinetic resolution. 

Successful gram-scale operation and further transformation opens a 

new avenue to drug and catalyst discovery. The racemization 

experiments were smoothly carried out to explore the 

stereochemical stability of these chiral units. The promising utility of 

these classes of scaffolds in drug delivery and asymmetric catalysis 

are currently under investigation in our laboratories and will be 

reported in due course. 

Experimental 

Representative procedure for synthesis of axially chiral 

allenoate-sulfonamide 3. To a Schlenk tube containing 1 (0.05 

mmol), β-ICD (1.5 mg, 10 mol%) and Cs2CO3 (0.05 mmol, 1.0 

equiv.) were added mesitylene (4 mL) and dienoate 2 (0.07 

mmol, 1.4 equiv.). The reaction mixture was stirred at -50 oC for 

24 hours to 7 days. The solvent was removed by silica gel 

column chromatography and the residue was then purified by 

silica gel column chromatography to afford the product 3. 

Representative procedure for synthesis of axially chiral 

acrylate-sulfonamide 5. To a Schlenk tube containing 1 (0.1 

mmol), β-ICD (0.3 mg, 1 mol%) and Cs2CO3 (0.1 mmol, 1.0 

equiv.) were added mesitylene (4 mL) and MBH acetate 4 (0.14 

mmol, 1.4 equiv.). The reaction mixture was stirred at -30 oC for 

32 h. The solvent was removed by silica gel column 

chromatography and the residue was then purified by silica gel 

column chromatography to afford the product 5. 

Representative procedure for synthesis of axially chiral 

sulfonamide 7 via selective N-H activation. To a Schlenk tube 

containing 6 (0.05 mmol), β-ICD (1.5 mg, 10 mol%) and Cs2CO3 

(0.05 mmol, 1.0 equiv.) were added mesitylene (3 mL) and MBH 

acetate 4c (0.14 mmol, 1.4 equiv.). The reaction mixture was 

stirred at -50 oC for 24 h. The solvent was removed by silica gel 

column chromatography and the residue was then purified by 

silica gel column chromatography to afford the product 7. 

Representative procedure for the kinetic resolution of NOBIN 

8. To a Schlenk tube containing rac-8 (0.1 mmol), β-ICD (1.0 mg, 

3 mol%) and K2CO3 (0.035 mmol, 0.35 equiv.) were added 

chlorobenzene (8 mL) and MBH acetate 4c (0.07 mmol, 0.7 

equiv.). The reaction mixture was stirred at 0 oC for 72 h. The 

solvent was removed by silica gel column chromatography and 

the residue was then purified by silica gel column 

chromatography to afford the product 9 and unreacted starting 

material 8. 
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