Cui, J., Yu, H., Chen, S., Chen, Y. and Liu, H., 2019. Simultaneous estimation and segmentation from projection data in dynamic PET. Medical physics, 46(3), pp.1245-1259.
Cui, J., Qin, Z., Chen, S., Chen, Y. and Liu, H., 2019. Structure and Tracer Kinetics-Driven Dynamic PET Reconstruction. IEEE Transactions on Radiation and Plasma Medical Sciences, 4(4), pp.400-409.
Gong, K., Kim, K., Cui, J., Wu, D., and Li, Q. 2021. The evolution of image reconstruction in PET: From filtered back-projection to artificial intelligence. PET clinics, 16(4), 533-542.
Cui, J., Xie, Y., Joshi, A., …, Liu, H. and Li, Q., 2022, PET denoising and uncertainty estimation based on NVAE model using quantile regression loss. In International Conference on Medical Image Computing and Computer-Assisted Intervention (pp. 173-183). Springer, Cham.
Cui, J., Xie, Y., Gong, K., …, Liu, H. and Li, Q. 2022. 2.5 D Nouveau VAE model for 11C-DASB PET image denoising and uncertainty estimation. Journal of Nuclear Medicine, 63(supplement 2), pp.3223-3223.
Cui, J., Gong, K., Guo, N., …, Liu, H. and Li, Q. 2021. SURE-based Stopping Strategy for Fine-tunable Supervised PET Image Denoising. In 2021 IEEE Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC) (pp. 1-3). IEEE.
Cui, J., Xie, Y., Gong, K., …, Liu, H. and Li, Q. 2021. PET denoising and uncertainty estimation based on NVAE model. In 2021 IEEE Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC) (pp. 1-3). IEEE.
Cui, J., Gong, K., Han, P., Liu, H. and Li, Q., 2020, October. Super Resolution of Arterial Spin Labeling MR Imaging Using Unsupervised Multi-scale Generative Adversarial Network. In International Workshop on Machine Learning in Medical Imaging (pp. 50-59). Springer, Cham.
Cui, J., Gong, K.,Pan, T. and Li, Q., 2020. [68Ga]-DOTATATE PET Image Denoising using Unsupervised Deep Learning Can Improve CNR in A Wide Range. Journal of Nuclear Medicine, 61(supplement 1), pp.429-429.
Cui, J., Gong, K., Guo, N., Wu, C., Kim, K., Liu, H. and Li, Q., 2019, May. Population and individual information guided PET image denoising using deep neural network. In 15th International Meeting on Fully Three-Dimensional Image Reconstruction in Radiology and Nuclear Medicine (Vol. 11072, p. 110721E). International Society for Optics and Photonics.
Cui, J., Gong, K., Guo, N., Kim, K., Liu, H. and Li, Q., 2019, March. CT-guided PET parametric image reconstruction using deep neural network without prior training data. In Medical Imaging 2019: Physics of Medical Imaging (Vol. 10948, p. 109480Z). International Society for Optics and Photonics.
Cui, J., Gong, K., Guo, N., Meng, X., Kim, K., Liu, H. and Li, Q., 2018, November. CT-guided PET image denoising using deep neural network without prior training data. In 2018 IEEE Nuclear Science Symposium and Medical Imaging Conference Proceedings (NSS/MIC) (pp. 1-3). IEEE.
Xie, N., Gong, K., Guo, N., Qin, Z., Cui, J., Wu, Z., Liu, H. and Li, Q. 2020. Clinically translatable direct Patlak reconstruction from dynamic PET with motion correction using convolutional neural network. In International Conference on Medical Image Computing and Computer-Assisted Intervention (pp. 793-802). Springer, Cham.
Zhou, Z., Guo, N., Cui, J., ... & Li, Q. 2019. Novel radiomic features based on graph theory for PET image analysis. In 2019 IEEE 16th International Symposium on Biomedical Imaging (ISBI 2019) (pp. 1311-1314). IEEE.