代表性论文:
(15)Chinese herbal medicine-inspired construction of multi-component hydrogels with antibacterial and wound-healing-promoting function. J. Mater. Chem. B, 2025, 13, 2826-2833.
(14)Supercritical CO2-Stable Cementing Materials Based on Vinyl Ester Resin for Maintaining Wellbore Integrity. Materials, 2025, 18, 244.
(13)Dynamic Double-Networked Hydrogels by Hybridizing PVA and Herbal Polysaccharides: Improved Mechanical Properties and Selective Antibacterial Activity. Gels, 2024, 10, 821.
(12)A Coordinating Small Organic Molecule with Tunable Lower Critical Solution Temperature for Efficient Management of Solar Radiation. Macromol. Rapid Commun. 2024, 2400167.
(11)Tunable Fluorescence and Morphology of Aggregates Built from a Mechanically Bonded Amphiphilic Bistable [2]Rotaxane. Chem. Eur. J. 2023, e202302132.(Hot Paper)
(10)破损套管温控型化学液体堵漏剂BDS的研制与应用. 2023,精细石油化工
(9)压差激活合成树脂堵漏剂的研制及评价. 2023,当代化工研究
(8)Building multi-color emitters with tailored lanthanide-based supramolecular metallogels. Colloids Surf. A: Physicochem. Eng. Aspects. 2022, 634,127910.
(7)Design of novel temperature-resistant and salt-tolerant acrylamide-based copolymers by aqueous dispersion polymerization. Des Monomers Polym. 2022,25,220-230.
(6)Building a quadruple stimuli-responsive supramolecular gel based on a supra-amphiphilic metallogelator. New J. Chem., 2021,45, 22902-22907.
(5)Development of Synthetic Strategies to Access Optically Pure Feringa’s Motors. Synthesis2021; 53, 4588-4598.
(4)Controllable and large-scale supramolecular vesicle aggregation: orthogonal light-responsive host–guest and metal–ligand interactions. J. Mater. Chem. B, 2019, 7, 4177-4183.
(3)Selective vesicle aggregation achieved via the self-assembly of terpyridine-based building blocks. Soft Mater, 2017. 21, 3847-3852.
(2)Hierarchical Self-Assembly of Supramolecular Muscle-Like Fibers. Angew. Chem. Inter. Edit., 2016, 55, 703-707. (Hot Paper)
(1)Muscle-like Supramolecular Polymers: Integrated Motion from Thousands of Molecular Machines. Angew. Chem. Inter. Edit., 2012, 51, 12504-12508. (首页封面文章)多家科研机构和媒体关注报道:2016年诺贝尔奖得主Prof. J. F. Stoddart; Prof. J. P. Sauvage等:“Supramolecular polymers: Molecular machines muscle up,Nature Nanotechnology, J. F. Stoddart, 2013, 8, 9-10”;法国国家与科学技术研究中心(CNRS):“Assembly of nano-machines mimics human muscle”;英国皇家化学会<<Chemistry World>>:“Molecular muscle machines bulk up”;科技日报,人民网,新华网:“研究称组合纳米机器可模拟人体肌肉运动”; Discovery news: “Molecular Machines Move Like Muscles”等。研究成果被认为将为许多应用领域打开广阔的前景,如微型机器人、纳米技术里面的信息存储、医学领域里的人工合成肌肉材料等)
申请专利:
(1)一种热致超分子凝胶暂堵转向压裂液。ZL201610532563.4(授权)
(2)一种用于相变压裂的相变压裂液体系。ZL201610534192.3(授权)
(3)一种相变水力压裂工艺。ZL201610531410.8(授权)
(4)Phase change fracturing fluid systme for phase change fracturing. US10364388B2(美国专利授权)
(5)Phase-change hydraulic fracturing process. US10301919B2(美国专利授权)
(6)一种相变压裂方法。 CN108561111B (授权)
(7)一种温度响应型水凝胶暂堵转向压裂液及其制备方法、应用。 ZL201910637568.7 (授权)
(8)一种稠油降粘剂及其使用方法。 ZL201911396141.9 (授权)
(9)一种耐温抗盐树枝状超分子聚合物驱油剂及其制备方法、应用。 ZL202010119691.2(授权)
(10)一种稀土超分子凝胶发光材料及其制备方法。 ZL202010663259.X (授权)
(11)一种基于冠醚的轮烷分子机器及制备方法。 ZL202110573063.6 (授权)
(12)一种增强苝二酰亚胺衍生物溶解性的方法。 ZL202110315453.3 (授权)
(13)一种区分稀土离子的方法。 ZL202010903359.5 (授权)
(14)一种液体固井材料及其制备方法。 CN202210425876 (授权)
(15)一种温控型复合树脂和树脂水泥封堵材料及其制备方法和在碳封存中的应用。CN202310583302.5
(16)一种温控双穿网络动态凝胶暂堵剂及其制备方法和应用。CN202410313602.6
(17)一种基于低临界温度体系的小分子及其合成方法和应用。CN202410168438.4
(18)一种促进伤口愈合的葛根素水凝胶及其制备方法和应用。CN202411548528.2