国际标准
[1] Metallic materials — Instrumented indentation test for hardness and materials parameters — Part 5: Linear elastic dynamic instrumented indentation testing (DIIT). 国际标准. ISO 14577-5:2022. Project leader: Guangjian Peng. ISO/TC 164/SC 3/WG 4. Publication date: 2022-10-31.
国家标准
[1] 张泰华, 王秀芳, 文东辉, 冯义辉, 杨荣, 彭光健. 仪器化纳米压入试验方法 术语. 中国标准. GB/T 31228—2014. 全国纳米技术标准化技术委员会(SAC/TC 279). 发布日期2014-09-30.
代表性论著
[38] G.J. Peng, L. Zhang, S.F. Li, Y. Huan, Z.Y. Piao*, P.J. Chen*. Spherical indentation method for measuring biaxial residual stresses without using stress‑free sample. Experimental Mechanics, 2024.
[37] G.J. Peng, J.F. Zhang, F.L. Xu*, W.F. Jiang, Y.H. Feng*, T.H. Zhang. Determination of uniaxial creep properties using equivalent factors by sharp indentation. Materials Today Communications, 2024, 41, 110653.
[36] G.J. Peng*, S.F. Li, L. Zhang, P.J. Cheng, W. Xiong, T.H. Zhang*. An instrumented sharp indentation method for measuring equibiaxial residual stress without using stress-free specimens. Acta Mechanica Solida Sinica, 2024.
[35] L.L. Feng, K.Q. Li*, G.J. Peng*. Progress and prospect of cryogenic micro- and nanomechanical in-situ characterization techniques based on electron microscopy. Acta Mechanica Solida Sinica, 2024.
[34] Z. Han, H.Y. Jiang, C.Y. Dong, L. Zhang, G.J. Peng*, T.H. Zhang. Instrumented indentation methods for measurement of residual stresses in thin films/coatings: A review. Journal of Coatings Technology and Research, 2024.
[33] H.Y. Jiang, X. Huang, Y.H. Feng, W. Xiong, Z.Y. Jin, G.J. Peng*. Ferritic–martensitic steels in power industry: microstructure, degradation mechanism, and strengthening methods. Steel Research International, 2024, 95(12), 2400372.
[32] F.L. Xu, G.J. Dou, J.F. Chen, H.Y. Jiang, T.H. Zhang, G.J. Peng*. A correction function to improve the accuracy of measuring elastic modulus by instrumented spherical indentation. Journal of Testing and Evaluation-ASTM, 2024, 52(4), 1867-1885.
[31] Z.Y. Zhou, Q.Y. Zheng, Y. Li, C. Ding, G.J. Peng*, Z.Y. Piao*. Research on the mechanism of the two-dimensional ultrasonic surface burnishing process to enhance the wear resistance for aluminum alloy. Friction, 2024, 12(3), 490-509.
[30] H.Y. Jiang, J.W. Wang, B.S. Yang, M.L. Dai, G.J. Peng*, F.J. Yang, X.Y. He. In-plane ESPI with unlimited angle of view for multi-object rotation angle determination. Optics Letters, 2023, 48(22), 5827-5830.
[29] G.J. Dou, M.M. Xu, Y.H. Hu, Y.H. Sun, H.Y. Jiang, G.J. Peng*. Improving the mechanical performance of phase change microcapsule/epoxy composites via alternately enhancing interface bonding and strength of microcapsules. Journal of Energy Storage, 2023, 73, 109212.
[28] G.J. Dou, Z.K. Lu, Y.H. Hu, Y.H. Sun, H.Y. Jiang, G.J. Peng*. Improvement of the rupture strength of MF shell microcapsule by incorporating TiO2 nanoparticles with an optimal content. Journal of Applied Polymer Science, 2023, 140(42), e54549.
[27] G.J. Peng, Y. Liu, F.L. Xu, H.Y. Jiang*, W.F. Jiang, T.H. Zhang. On determination of elastic modulus and indentation hardness by instrumented spherical indentation: influence of surface roughness and correction method. Materials Research Express, 2023, 10(8), 086503.
[26] B. Liu, J.J. Hu*, G.J. Peng*. Creep behaviors of nanocrystalline copper after stress reduction under nanoindentation at ambient temperature. Materials Letters, 2023, 350, 134899.
[25] Y.H. Sun, G.J. Dou, K. Wu, P.J. Chen, T.H. Zhang, G.J. Peng*. Maximum prime vertical strain criterion to predict rupture of core-shell microspheres. International Journal of Mechanical Sciences, 2023, 244, 108053.
[24] 李赛飞, 张亮, 彭光健*, 韩志, 张泰华. 基于锥形压入总功的金属表面等轴残余应力检测方法. 中国科学: 物理学 力学 天文学, 2023, 53(1): 214603.
[23] G.J. Dou, G.J. Peng*, Y.H. Hu, Y.H. Sun, H.Y. Jiang, T.H. Zhang. Effects of interface bonding on the macro-mechanical properties of microcapsule/epoxy resin composites. Surfaces and Interfaces, 2022, 34: 102310.
[22] 彭光健, 张泰华*. 表面残余应力的仪器化压入检测方法研究进展. 力学学报, 2022, 54(8): 2287-2303.
[21] Y.H. Sun, G.J. Peng*, G.J. Dou, Y.H. Hu, P.J. Chen, T.H. Zhang. A nano-compression model to characterize the elastic properties of core–shell structured microspheres. Thin-Walled Structures. 2022, 173: 108951.
[20] G.J. Peng, Y.H. Hu, G.J. Dou, Y.H. Sun, Y. Huan, S.H. Kang*, Z.Y. Piao*. Enhanced mechanical properties of epoxy composites embedded with MF/TiO2 hybrid shell microcapsules containing n-octadecane. Journal of Industrial and Engineering Chemistry. 2022, 110: 414-423.
[19] W.H. Xia, G.J. Peng*, Y.H. Hu, G.J. Dou. Desired properties and corresponding improvement measures of electrospun nanofibers for membrane distillation, reinforcement, and self‐healing applications. Polymer Engineering & Science. 2022, 62(2): 247-268.
[18] H.Y. Jiang, F.J. Yang*, X.J. Dai, X.Y. He, G.J. Peng*. Tri-wavelength simultaneous ESPI for 3D micro-deformation field measurement. Applied Optics. 2022, 61(2): 615-622.
[17] Y.H. Sun, G.J. Peng*, Y.H. Hu, G.J. Dou, P.J. Chen, T.H. Zhang. Spherical indentation model for evaluating the elastic properties of the shell of microsphere with core-shell structure. International Journal of Solids and Structures. 2021, 230-231: 111159.
[16] G.J. Peng*, F.L. Xu, J.F. Chen, Y.H. Hu, H.D. Wang, T.H. Zhang*. A cost-effective voice coil motor-based portable micro-indentation device for in situ testing. Measurement. 2020, 165: 108105.
[15] G.J. Peng, Y.H. Sun, G.J. Dou, Y.H. Hu, W.F. Jiang, T.H. Zhang*. Microcompression method for determining the size-dependent elastic properties of PMMA microcapsules containing n-Octadecane. Langmuir. 2020, 36(19): 5176-5185.
[14] G.J. Peng, G.J. Dou, Y.H. Hu, Y.H. Sun, Z.T. Chen*. Phase change material (PCM) microcapsules for thermal energy storage. Advances in Polymer Technology. 2020, 2020: 9490873. (2020年度APT期刊最佳论文奖,每年甄选1篇)
[13] 彭光健, 严奇, 张泰华*, 吴江敬. 热输入对5A06-6061铝合金搅拌摩擦焊接头断裂特征的影响. 中国有色金属学报. 2020, 30(9): 2041-2047.
[12] G.J. Peng, F.L. Xu, J.F. Chen, H.D. Wang, J.J. Hu*, T.H. Zhang*. Evaluation of non-equibiaxial residual stresses in metallic materials via instrumented spherical indentation. Metals. 2020, 10(4): 440.
[11] T.H. Zhang, W.Q. Cheng, G.J. Peng*, Y. Ma, W.F. Jiang, J.J. Hu, H. Chen. Numerical investigation of spherical indentation on elastic-power-law strain-hardening solids with non-equibiaxial residual stresses. MRS Communications. 2019, 9(01): 360-369.
[10] G.J. Peng, Q. Yan, J.J. Hu, P.J. Chen, Z.T. Chen*, T.H. Zhang*. Effect of forced air cooling on the microstructures, tensile strength, and hardness distribution of dissimilar friction stir welded AA5A06-AA6061 joints. Metals. 2019, 9(3): 304.
[9] Z.T. Chen, G.J. Peng*, P.J. Chen, Y. Xia, G. Li*. Investigation of the tribological behavior of chromium aluminum silicon nitride coatings via both scratch sliding test and FEM simulation. AIP Advances. 2019, 9(2): 025116.
[8] G.J. Peng, Y. Ma, J.J. Hu, W.F. Jiang, Y. Huan, Z.T. Chen*, T.H. Zhang*. Nanoindentation hardness distribution and strain field and fracture evolution in dissimilar friction stir-welded AA 6061-AA 5A06 aluminum alloy joints. Advances in Materials Science and Engineering. 2018, 2018: 4873571.
[7] G.J. Peng, Z.K. Lu, Y. Ma, Y.H. Feng, Y. Huan, T.H. Zhang*. Spherical indentation method for estimating equibiaxial residual stress and elastic-plastic properties of metals simultaneously. Journal of Materials Research. 2018, 33(08): 884-897.
[6] 陈通, 彭光健*, 张泰华. 相变微胶囊单体破坏极限的评估方法. 实验力学. 2018, 33(1): 17-23.
[5] G.J. Peng, Y. Ma, Y.H. Feng, Y. Huan, C.J. Qin, T.H. Zhang*. Nanoindentation creep of nonlinear viscoelastic polypropylene. Polymer Testing. 2015, 43: 38-43.
[4] G.J. Peng, Y.H. Feng, D.H. Wen, T.H. Zhang*. An instrumented indentation method for evaluating the effect of hydrostatic pressure on the yield strength of solid polymers. Journal of Materials Research. 2014, 29(24): 2973-2981.
[3] G.J. Peng, Y.H. Feng, Y. Huan, T.H. Zhang*. Characterization of the viscoelastic-plastic properties of UPVC by instrumented sharp indentation. Polymer Testing. 2013, 32(8): 1358-1367.
[2] G.J. Peng, T.H. Zhang*, Y.H. Feng, R. Yang. Determination of shear creep compliance of linear viscoelastic solids by instrumented indentation when the contact area has a single maximum. Journal of Materials Research. 2012, 27(12): 1565-1572.
[1] G.J. Peng, T.H. Zhang*, Y.H. Feng, Y. Huan. Determination of shear creep compliance of linear viscoelastic-plastic solids by instrumented indentation. Polymer Testing. 2012, 31(8): 1038-1044.
代表性授权发明专利
[22] 彭光健, 陈建锋, 徐风雷, 张泰华. 适用于实验室和野外测试的双立柱双横梁便携式压入仪. 发明专利. ZL202010818195.6, 授权日期2024-07-19.
[21] 彭光健, 窦贵靖, 孙义恒, 赵城城, 陈建锋, 张泰华. 一种用于纳米压入实验的扫描电镜样品台固定装置. 发明专利. ZL201910914563.4, 授权日期2024-05-07.
[20] 彭光健, 赵城城, 胡将将, 窦贵靖, 陈建锋, 张泰华. 一种具有双面循环冷却效果的搅拌摩擦焊接装置. 发明专利. ZL201910911089.X, 授权日期2024-06-18.
[19] 彭光健, 黄鑫, 窦贵靖, 陈建锋. 一种基于气动加载的微针进针器. 发明专利. ZL202210294807.5, 授权日期2024-05-03.
[18] 彭光健, 黄鑫, 严琴英. 一种基于重力加载的微针进针器. 发明专利. ZL202210410016.4, 授权日期2024-05-03.
[17] 彭光健, 陈建锋, 徐风雷, 窦贵靖, 赵城城, 张泰华. 一种用于调节便携式微米压入仪作动杆垂直度的装置. 发明专利. ZL201910920672.7, 授权日期2024-04-12.
[16] 彭光健, 徐风雷, 严奇. 一种适用于测量非等轴残余应力的旋转压头组件. 发明专利. ZL201910526364.6, 授权日期2024-02-23.
[15] 彭光健, 徐风雷, 孙义恒, 严奇, 张泰华. 一种用于固定便携式压入仪的万能支座. 发明专利. ZL201910178803.9, 授权日期2023-12-22.
[14] 谢孝盼, 彭光健*, 张泰华, 蒋伟峰, 马毅, 陈恒. 一种便携式划入测试系统. 发明专利. ZL201611076502.8, 授权日期2023-06-27. (学生为第一发明人)
[13] 彭光健, 赵城城, 胡将将. 一种细线和绳索的拉伸夹具. 发明专利. ZL202011336882.0, 授权日期2022-12-20.
[12] 彭光健, 严奇, 孙义恒, 张泰华. 一种具备冷却效果的搅拌摩擦焊接的装置. 发明专利. ZL201710666183.4, 授权日期2022-11-25. (已转让)
[11] 彭光健, 赵城城, 胡将将. 一种适用于线绳拉伸的夹具. 发明专利. ZL202011312906.9, 授权日期2022-10-28.
[10] 彭光健, 孙义恒, 窦贵靖, 胡亚豪. 一种基于显微压缩的薄壁微球结构材料壁材弹性模量的测试方法. 发明专利. ZL202010876515.3, 授权日期2022-07-15.
[9] 彭光健, 陈建锋, 徐风雷, 蒲建. 一种能够避免积液回流的一次性穿刺器. 发明专利. ZL202010564276.8, 授权日期2021-11-23.
[8] 彭光健, 陈建锋, 徐风雷, 蒲建. 一种双层管结构的一次性使用穿刺器. 发明专利. ZL202010564279.1, 授权日期2021-10-29.
[7] 彭光健, 陈建锋, 徐风雷, 蒲建. 一种具有积液收集腔的一次性穿刺器. 发明专利. ZL202010564280.4, 授权日期2021-10-29.
[6] 彭光健, 陈建锋, 徐风雷, 张泰华. 适用于便携式压入仪的参比针式压入深度测量装置. 发明专利. ZL202011312905.4, 授权日期2021-08-03.
[5] 彭光健, 徐风雷, 孙义恒, 严奇, 张泰华. 一种平面任意残余应力的仪器化球形压入检测方法. 发明专利. ZL201910080510.7, 授权日期2020-06-02.
[4] 彭光健, 徐风雷, 孙义恒, 严奇, 张泰华. 一种基于导轨式电磁驱动压入仪的压入载荷计算方法. 发明专利. ZL201910079920.X, 授权日期2020-06-02.
[3] 彭光健, 逯智科, 马毅, 张泰华, 陈培见. 一种基于仪器化球压入技术的残余应力检测方法. 发明专利. ZL201510035646.8, 授权日期2017-04-12.
[2] 彭光健, 马毅, 张泰华, 逯智科. 一种多压头仪器化压入测试系统. 发明专利. ZL201410461770.6, 授权日期2016-09-07.
[1] 彭光健, 郇勇, 张泰华. 一种基于柔性支撑技术的电磁式微力试验机的检验方法. 发明专利. ZL201010268634.7, 授权日期2013-07-10.