头像
Last updated:2024.08.20
Total visits:10

Shenshoufeng

| Doctor Professor Doctoral supervisor

Company:

Post:

Research direction:

Office Location: LiXue Building A106

Tel:

Email: mathssf@zjut.edu.cn

Mobile phone access
  • Biography

    EDUCATION:

    2000.9-2005.6    M.S. and Ph.D. in Mathematics,   Zhejiang University

    1996.9-2000.7    B.S. in Mathematics,   Zhejiang University (XiXi Campus)


    TEACHING EXPERIENCE:

    2005.7-now   Department of Applied Mathematics,  Zhejiang University of Technology

     (2005.7-2007.8  instructor; 2007.9-2012.10  associate professor;  2012.11-now   professor)

              

    2013.9-2014.9  University of South Florida   Visiting Scholar


  • Courses

    Ordinary differential equation; Mathematical physical equation.

  • Achievement

    [21] Y.Y. Jin, S.F. Shen(通讯作者), Some L^p-Hardy and L^p-Rellich type inequalities with remainder terms, 《J. Aust. Math. Soc.》published online 2021, doi: 10.1017/S1446788721000100.


    [20] K. Zhou, J.Q. Song, S.F. Shen, Wen-Xiu Ma, A combined short pulse-mKdV equation and its exact solutions by two-dimensional invariant subspaces, 《Reports Math. Phys.》83 (2019) 321-329.


    [19] S.F. Shen, C.X. Li, Y.Y. Jin, Wen-Xiu Ma, Completion of the Ablowitz-Kaup-Newell-Segur integrable coupling, 《J. Math. Phys.》 59 (2018) 103503.


    [18] S.F. Shen, B.F. Feng, Y. Ohta, A modified complex short pulse equation of defocusing type, 《J. Nonl. Math. Phys.》 24 (2017) 195-209.


    [17] S.F. Shen, Y.Y. Jin, Group classification of differential-difference equations: Low-dimensional Lie algebras, 《Acta Math. Appl. Sinica》 33 (2017) 345-362.


    [16] L.Y. Ma, S.F. Shen, Z.N. Zhu, Soliton solution and gauge equivalence for an integrable nonlocal complex modified Korteweg-de Vries equation, 《J. Math. Phys.》 58 (2017) 103501.


    [15] S.D. Zhu, S.F. Shen(通讯作者), Y.Y. Jin, C.X. Li, Wen-Xiu Ma, New soliton hierarchies associated with the real Lie algebra so(4,R), 《Math. Meth. Appl. Sci.》 40 (2017) 680-698.


    [14] S.F. Shen, B.F. Feng, Y. Ohta, From the real and complex coupled dispersionless equations to the real and complex short pulse equations, 《Stud. Appl. Math.》 136 (2016) 64-88.


    [13] C.X. Li, L. Stephane, S.F. Shen, A semi-discrete Kadomtsev-Petviashvili equation and its coupled integrable system, 《J. Math. Phys.》 57 (2016) 053503.


    [12] S.F. Shen, L.Y. Jiang, Y.Y. Jin, Wen-Xiu Ma, New soliton hierarchies associated with the Lie algebra so(3, R) and their bi-Hamiltonian structures, 《Reports Math. Phys.》 75 (2015) 113-133.


    [11] S.F. Shen, C.X. Li, Y.Y. Jin, Wen-Xiu Ma, Multi-component integrable couplings for the Ablowitz-Kaup-Newell-Segur and Volterra hierarchies, 《Math. Meth. Appl. Sci.》 38 (2015) 4345-4356.


    [10] 沈守枫, 于水猛, 李春霞, 金永阳, 2n维空间中的广义自对偶Yang-Mills方程的达布变换, 数学物理学报 35 (2015) 478-486.


    [9] Q. Huang, S.F. Shen, Lie symmetries and group classification of a class of time fractional evolution systems, 《J. Math. Phys.》 56 (2015) 123504.


    [8] S.F. Shen, Y.Y. Jin, J. Zhang, Bäcklund transformations and solutions of some generalized nonlinear evolution equations, 《Reports Math. Phys.》 73 (2014) 255-279. 


    [7] Y.J. Ye, Wen-Xiu Ma, S.F. Shen(通讯作者), Zhang DD, A class of third-order nonlinear evolution equations admitting invariant subspaces and associated reductions, 《J. Nonl. Math. Phys.》 21 (2014) 132-148. 


    [6] L.N. Ji, C.Z. Qu, S.F. Shen, Conditional Lie-Bäcklund symmetry of evolution system and application for reaction-diffusion system, 《Stud. Appl. Math.》 133 (2014) 118-149.


    [5] S.F. Shen, Y.Y. Jin, Rellich type inequalities related to Grushin type operator and Greiner type operator, 《Appl. Math. J. Chinese Univ.》 27 (2012) 353-362.


    [4] S.F. Shen, C.Z. Qu, Y.Y. Jin, L.N. Ji, Maximal dimension of invariant subspaces to systems of nonlinear evolution equations, 《Chinese Ann. Math. Series B》 33 (2012) 161-178.


    [3] S.F. Shen, C.Z. Qu, Q. Huang, Y.Y. Jin, Lie group classification of the Nth-order nonlinear evolution equations, 《Sci. China Math.》 54 (2011) 2553-2572.


    [2] C.Z. Qu, S.F. Shen, Nonlinear evolution equations admitting multilinear variable separable solutions, 《J. Math. Phys.》 50 (2009) 103522.


    [1] S.F. Shen, Lie symmetry reductions and exact solutions of some differential difference equations, 《J. Phys. A: Math. Theor.》 40 (2007) 1775-1783.



  • Project

    2014.1-2017.12: Principle Investigator sponsored by the National Natural Science Foundation of China (grant No. 11371323): Generalized Symmetry, Fractional Integrable System and Inequality


    2011.1-2013.12: Principle Investigator sponsored by the National Natural Science Foundation of China (grant No. 11001240): Symmetry Group Classification of Differential-Difference Equations and Integrability


    2010.1-2011.12: Principle Investigator sponsored by the Natural Science Foundation of Zhejiang Province (grant No. Y6090383): Soliton Equations with Self-consistent Sources and the Symmetry Group Analysis 


Link

Last updated:2024.08.20
Total visits:10