唐超军,1978年生,安徽阜阳人,博士(后),副教授,硕士生导师。
1. 教育背景与工作经历
1998.09-2002.06,安庆师范大学物理系,学士。
2002.09-2005.06,苏州大学物理系,硕士(导师:高 雷 教授)。
2005.09-2010.06,南京大学物理系,博士(导师:王振林 教授)。
2010.06-2012.06,南京大学微结构国家实验室,博士后(导师:王振林 教授)。
2012.06----至今,浙江工业大学理学院,专任物理教师。
2. 研究领域
人工超材料(metamaterials)的设计、制备和奇异电磁性质;金属纳米结构中表面等离激元(surface plasmons)共振在表面增强拉曼散射(SERS)、传感、光催化、太阳能等方面的基础研究;石墨烯中光吸收的增强和电调制。
3. 基金项目
[01] 金属纳米结构中表面等离激元的Fano共振(No.11104136),国家自然科学基金委,青年基金项目,2012.01-2014.12,项目负责人。
[02] 超构材料中光频磁场增强及表面增强拉曼散射(No.LY14A040004),浙江省自然科学基金委,面上项目,2014.01-2016.12,项目负责人。
[03] 超薄类金刚石薄膜包覆金属微纳结构的奇异表面等离激元特性引发的表面增强拉曼(No.11104135),国家自然科学基金委,青年基金项目,2012.01-2014.12,第二参与人。
[04] 超薄ta-C薄膜包覆Ag-Bowtie结构及其表面增强拉曼散射研究 (No.LY15A040005),浙江省自然科学基金委,面上项目,2015.01-2017.12,第二参与人。
[05] 金属Bowtie结构耦合电场强度的调控及表面增强拉曼散射研究(No.11574270),国家自然科学基金委,面上项目,2016.01-2019.12,第二参与人。
[06] 新型金属微纳结构表面等离激元共振激发、传播及其物理效应(No.10734010),国家自然科学基金委,重点项目,2008.01-2011.12,第六参与人。
[07] 有序阵列金属纳米材料的制备与光学特性研究(No. 50771054),国家自然科学基金委,面上项目,2008.01-2011.12,第七参与人。
[08] 表面等离激元微腔实现及光与受限体系的强耦合效应(No.91221206),国家自然科学基金委,重大研究计划,2013.01-2016.12,第五参与人。
[09] 军工科技项目-公开(No.19-163-21-TS-001-067-01),JG-LX-2021012,2021.02-2022.01,第二参与人。
[10] 基于超材料实现石墨烯的光吸收增强和电调控,南京大学江苏省功能材料设计原理与应用技术重点实验室,开放课题,2022.01-2023.12,项目负责人
[11] 近红外区域石墨烯中电磁波的吸收增强及其电调制,南京大学固体微结构物理国家重点实验室,开放课题,2022.07-2024.06,项目负责人。
[12] 近红外区域石墨烯中电磁波的吸收增强及其电调制(No.202307),东南大学毫米波国家重点实验室,开放课题,2023.01-2024.12,项目负责人。
[13] 基于超构表面的多维光波参量联合调控研究(No.RF-A2022003),浙江省高校基本科研业务费项目,2023.01-2025.01,第二参与人。
4. 主要论文
[17] J. Chen, J. Y. Wu, D. F. Huang, C. J. Tang*, M. W. Zhu*, and L. H. Wang, “Eco-friendly color printing using transparent wood paper,” Advanced Optical Materials 11(10), 2203093 (2023).
[16] Z. Q. Liu*, G. Q. Liu, X. S. Liu*, J. Chen, and C. J. Tang, “Spatially and frequency-selective optical field coupling absorption in ultra-thin random metasurface,” Optics Letters 48(7), 1586-1589 (2023).
[15] P. Gu, J. Chen, Y. H. Guo, Z. X. Zhang, C. J. Tang, Y. Q. Cao, T. Z. Hu, Z. Chen*, and Z. L. Wang*, “Nanoscale Al2O3 core with Ag shell-based ultranarrow and symmetric cavity plasmons for sub-nm spectral-shift and radius differential resolution measurements,” ACS Applied Nano Materials 5(6), 8196-8204 (2022).
[14] Z. D. Yan, L. C. Kong, C. J. Tang*, J. Deng*, P. Gu, J. Chen*, X. X. Wang, Z. Yi, and M. W. Zhu, “Ultra-broadband and completely modulated absorption enhancement of monolayer graphene in near-infrared region,” Optics Express 30(19), 34787-34796 (2022).
[13] Z. D. Yan, X. Lu, W. Du, Z. Q. Lv, C. J. Tang*, P. G. Cai, P. Gu, J. Chen*, and Z. Yu, “Ultraviolet graphene ultranarrow absorption engineered by lattice plasmon resonance,” Nanotechnology 32(46), 465202 (2021).
[12] P. Gu, J. Chen*, S. Y. Chen, C. Yang, Z. X. Zhang, W. Du, Z. D. Yan, C. J. Tang*, and Z. Chen*, “Ultralarge Rabi splitting and broadband strong coupling in spherical hyperbolic metamaterial cavity,” Photonics Research 9(5), 829-837 (2021).
[11] B. Liu, W. J. Yu, Z. D. Yan, C. J. Tang*, P. Gu, J. Chen*, Z. Q. Liu*, and Z. Huang, “Ultra-narrowband light absorption enhancement of monolayer graphene from waveguide mode,” Optics Express 28(17), 24908-24917 (2020).
[10] J. Chen, P. Gu, Z. D. Yan, C. J. Tang*, Z. J. Xu, B. Liu, and Z. Q. Liu*, “Electrically modulating and switching infrared absorption of monolayer graphene in metamaterials,” Carbon 162, 187-194 (2020).
[09] Z. D. Yan, Q. Zhu, M. J. Wan, X. Lu, X. T. Pu, C. J. Tang*, and L. L. Yu, “Graphene ultraviolet ultrahigh-Q perfect absorption for nanoscale optical sensing,” Optics Express 28(5), 6095-6101 (2020).
[08] B. Liu, C. J. Tang*, J. Chen*, Q. G. Wang, M. X. Pei, and H. Tang, “Dual-band light absorption enhancement of monolayer graphene from surface plasmon polaritons and magnetic dipole resonances in metamaterials,” Optics Express 25(10), 12061-12068 (2017).
[07] J. Chen*, W. F. Fan, T. Zhang, C. J. Tang*, X. Y. Chen, J. J. Wu, D. Y. Li, and Y. Ying, “Engineering the magnetic plasmon resonances of metamaterials for high-quality sensing,” Optics Express 25(4), 3675-3681 (2017).
[06] J. Chen*, P. Mao, R. Q. Xu, C. J. Tang*, Y. J. Liu, Q. G. Wang, and L. B. Zhang, “Strategy for realizing magnetic field enhancement based on diffraction coupling of magnetic plasmon resonances in embedded metamaterials,” Optics Express 23(12), 16238-16245 (2015).
[05] C. J. Tang, Q. G. Wang, F. X. Liu, Z. Chen*, and Z. L. Wang, “Optical forces in twisted split-ring-resonator dimer stereometamaterials,” Optics Express 21(10), 11783-11793 (2013).
[04] C. J. Tang, P. Zhan, Z. S. Cao, J. Pan, Z. Chen, and Z. L. Wang*, “Magnetic field enhancement at optical frequencies through diffraction coupling of magnetic plasmon resonances in metamaterials,” Physical Review B 83(4), 041402 (Rapid Communications) (2011).
[03] F. X. Liu*, Z. S. Cao, C. J. Tang, L. Chen, and Z. L. Wang*, “Ultrathin diamond-like carbon film coated silver nanoparticles-based substrates for surface-enhanced Raman spectroscopy,” ACS Nano 4(5), 2643-2648 (2010).
[02] C. J. Tang, Z. L. Wang*, W. Y. Zhang, S. N. Zhu, N. B. Ming, G. Sun, and P. Sheng, “Localized and delocalized surface-plasmon-mediated light tunneling through monolayer hexagonal-close-packed metallic nanoshells,” Physical Review B 80(16), 165401 (2009).
[01] J. Sun, Y. Y. Li, H. Dong, P. Zhan*, C. J. Tang, M. W. Zhu, and Z. L. Wang*, “Fabrication and light-transmission properties of monolayer square symmetric colloidal crystals via controlled convective self-assembly on 1D grooves,” Advanced Materials 20(1), 123-128 (2008).