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Abstract: This paper proposes a Stackelberg game-based optimal energy management model for a microgrid with commercial
buildings (CBs), which include a cluster of flexible loads, such as a heating, ventilation, and air conditioning (HVAC) system and
a lighting system. In particular, the microgrid operator (MGO) determines the optimal energy management scheme while the
CBs enjoy a dynamic pricing tariff to adjust their consumption patterns for cost saving. The interactions between MGO and CBs
are formulated as a bi-level optimisation problem where the MGO behaves as a leader and CBs act as followers. The proposed
model is transformed into a mixed integer linear programming (MILP) problem by jointly using the Karush–Kuhn–Tucker (KKT)
condition and the strong duality theory. Besides, the effects of correlated solar irradiance and solar illuminance uncertainties on
the load profile are taken into account through invoking the Nataf transformation-based 2M + 1 point estimate method (PEM).
Finally, case studies are served for demonstrating the feasibility and efficiency of the proposed method.

Nomenclatures
A. abbreviations

MGO Microgrid operator
KKT Karush–Kuhn–Tucker
ISO Independent system operator
HVAC Heating, ventilation and air conditioning
RTP Real time price
TOU Time-of-use
IAQ Indoor air quality
PV Photovoltaic
ESS electric storage system
AHU Air Handling Unit
VAV Variable Air Volume
VFD Variable Frequency Drive
PEM Point estimate method
CDF Cumulative distribution function
MILP Mixed integer linear programming
DR Demand response
DRM Demand response management
CB Commercial building

B. parameters

ηcha/ηdis charge/discharge efficiency of ESS
pcha

max/pdis
max maximum charge/discharge power of ESS, [kW]

Smax/Smin maximum/Minimum storage energy in ESS,
[kWh]

Ncb number of commercial buildings in the microgrid
N number of zones in a commercial building
ρt

ws wholesale electricity price in period t, [￠/kW]
ρt

max/ρt
min maximum/Minimum retail electricity price in

period t, [￠/kW]
ρave

in upper bound of average retail electricity price,
[￠/kW]

Pmax
ws maximum trading power with the wholesale

market, [kW]
τsol

ele photoelectric conversion efficiency of each PV
panel

Aele area of each PV panel, [m2]
Et solar irradiance in period t, [kW].
cair specific heat capacity of air, [J/(kg·K)].
ρair air density, [kg/m3].
V

i volume of the ith zone, [m3]
B

i heat transfer coefficient of ith zone
θt

out outdoor temperature in period t, [℃]

Qsolar, t
i solar radiation heat power for the ith zone in

period t, [kW]
Qinfle, t

i inflexible loads heat dissipation power in the ith
zone during period t, [kW]

Qcrowd, t
i crowd heat dissipation power in the ith zone

during period t, [kW]
Fwin

i area of windows in the ith zone, [m2]
Sshe

i shading coefficient of the ith zone
λlight coefficient of heat dissipation of the lighting

system
λinfle coefficient of heat dissipation of inflexible loads
ncrowd, t

i number of people in the ith zone during period t
φ clustering coefficient of the crowd
k cooling load coefficient for sensible heat from

human bodies
qsen sensible heat power from human bodies
qlat latent heat power from human bodies
Ccrowd, t

i carbon dioxide generation by the crowd in the ith
zone, [L/s]

Ct
out outside carbon dioxide concentration, [ppm]

θmax/θmin maximum/minimum allowable indoor
temperature, [℃]

Cmax/Cmin maximum/minimum allowable indoor carbon
dioxide concentration, [ppm].

η the efficiency factor of the cooling coil
COP performance coefficient of the chiller
k2/k1/k0 coefficients related to fan power consumption
mHVAC

max /mHVAC
min maximum/minimum HVAC air flow rate in each

zone, [kg/s]
MHVAC

max maximum total HVAC air flow rate, [kg/s]
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θmax
cool/θmin

cool maximum/minimum cooling coil temperature,
[℃]

ILout, t outdoor solar illumination in period t, [lux]
ILmax/ILmin maximum/minimum required inside illumination,

[lux]
Rlight unit power consumption of the artificial lighting,

[kW]
Fin

i internal area in the ith zone, [m2]
Pmax

in maximum trading power between the microgrid
and commercial buildings, [kW]

C. variables

St state of Charge of ESS in period t, [kWh]
Pcha, t /Pdis, t charge/discharge power of ESS in period t, [kW]
xcha, t binary variable representing charging or discharging

for ESS in period t (1 for charging, 0 for discharging)
ρt

in retail electricity price in period t, [￠/kW]
Pt

in the total load power of each building in period t, [kW]

Pt
ws purchasing power from the wholesale market in

period t, [kW]
Psol, t PV power in period t, [kW]
θt

i indoor temperature of the ith zone in period t, [℃]

θt
cool cooling coil temperature in period t, [℃]

θt
mix mixed air temperature in period t, [℃]

Qlight, t
i lighting load heat dissipation power for the ith zone in

period t, [kW]
Plight, t

i lighting power for the ith zone in period t, [kW]

Pinfle, t
i inflexible loads power of the ith zone in period t,

[kW]
Ct

i carbon dioxide concentration in the ith zone during
period t, [ppm]

Ct
mix mixed carbon dioxide concentration supplied to each

zone during period t, [ppm]
PHVAC, t HVAC power in period t, [kW]
Pcoil, t cooling coil power in period t, [kW]
P f an, t VFD fan power in period t, [kW]
mHVAC, t

i HVAC air flow rate of the ith zone in period t, [kg/s]
ILin, t

i indoor lighting illumination in the ith zone during
period t, [lux]

1Introduction
1.1 Motivation and incitement

A microgrid, primarily including loads, renewable energy sources,
and electric storage systems (ESSs), is often placed near the load
centre [1]. With the rapid development of communications and
control technologies, the microgrid operator (MGO) can respond
immediately to electricity prices and schedule the controllable
resources for potential benefits [2]. Therefore, how to determine
the price-based demand response (DR) strategies and the optimal
energy management for the microgrid has been a hot topic in both
academic and industrial communities.

A two-level market structure is usually employed in a microgrid
energy management in existing publications, in which the MGO is
regarded as a central control agent that executes DR programs and
negotiates on behalf of the consumers with the independent system
operator (ISO) efficiently [3, 4]. With the implementation of the
retail electricity market, the MGO would function as an
intermediary agent between the ISO and consumers. Specifically,
the MGO determines the energy procurement from the wholesale
electricity market and sells electricity to consumers in turn at a
retail price, which induces consumers to adjust their consumption
patterns effectively and thus acts as a key factor in an energy
management model for a microgrid. Ordinarily, the retail price
model includes real-time pricing, time-of-use (TOU) pricing,
critical peak pricing, and so on. In this regard, the real-time retail
price varies hourly to reflect wholesale price changes, as well as
plays a key role in economical operation and efficient energy
management for both MGO and consumers.

In a competitive electricity retail market, consumers are no
longer just price takers, and instead they may have impacts on the
clearance in an electricity retail market. Only considering
economic aspects of retailers or consumers on setting the real-time
price (RTP) of electricity is not fair for the other side. The
Stackelberg game, being superbly efficient for designing the RTP
in the microgrid with a leader-follower structure, is widely used to
determine the real-time retail price of electricity recently [5, 6].

A commercial building (CB), as one of major power consumers,
usually controls the loads therein in a centralised manner, and thus
should be regarded as effective and promising DR resources in the
microgrid [7, 8]. However, the reported DR resources of CBs
mostly refer to the heating, ventilation and air conditioning
(HVAC) system, and the weather uncertainties on DR strategies are
usually neglected. This situation motivates us to deeply and
comprehensively study the DR model of CBs as well as determine
an optimal real-time retail pricing scheme for CBs in a microgrid.

1.2 Literature review

Generally, the HVAC system accounts for most of the energy
consumption in CBs [9]. Due to thermal storage characteristics of
buildings, the HVAC system usually acts as a DR resource to
respond to the RTP of electricity with respecting the indoor
temperature comfort levels. In [10], a HVAC system is modelled as
a virtual storage and then an optimal coordination dispatch scheme
is developed for the HVAC system and ESS. In [11], an experiment
is carried out to demonstrate that a HVAC system in CBs is capable
of providing a satisfactory frequency regulation without adverse
impacts on the indoor climate. Except for keeping the indoor heat
balance, a HVAC system also influences the indoor air quality
(IAQ) as a result of its circulating indoor and outdoor air [12].
Similar to HVAC systems, lighting systems, which account for a
certain portion of power consumption in CBs, could be regarded as
curtailable loads with the best use of daylight [13, 14]. However,
existing publications have not yet developed DR models with a
comprehensive investigation into indoor thermal comfort, IAQ, and
lighting conditions. Besides, for economic and environmental
benefits, the photovoltaic (PV) panels could be installed on the roof
of CBs. Therefore, it is demanding to develop a coordinated power
dispatch scheme for HVAC systems, lighting systems and PV
outputs for CBs.

Moreover, the DR energy management model is closely related
to weather regimes, whose uncertainties could have significant
impacts on the power dispatching. In [15], the solar irradiance and
outdoor temperature uncertainties are addressed in a solar-assisted
HVAC system coupled with a water heating system. However, the
effects of correlations among a variety of weather uncertainties on
the DR model are neglected, and the accuracy of the results
obtained is questionable. Some publications have discussed several
methods of solving correlated uncertainties, for example, the
Monte–Carlo simulation [16], 2M + 1 point estimate method
(PEM) [16], and Latin Hypercube Sampling [17]. Among those
simulation methods, 2M + 1 PEM efficiently reduces computational
burden and shows great performance for calculating statistical
moments of random output quantities [18]. Further, Nataf
transformation is employed in [18] to transform the non-normal
random variables into normal random variables, which gives an
easier access to the weighting factors in PEM. The Nataf
transformation based 2M + 1 PEM is thus used to deal with the
correlated weather uncertainties in the demand response
management (DRM) problem here.

In order to implement the DRM of CBs efficiently, it is critical
to make a reasonable RTP signal. Recently, there have been
growing interests in adopting the Stackelberg game to model the
electricity-trading process between the MGO and consumers for an
optimal RTP scheme. In the game, the MGO acts as a leader to
determine a RTP scheme with the objective of revenues
maximisation while consumers, as followers, respond to RTP for
minimisation of the electricity purchasing cost [19, 20]. Ref. [21]
uses the non-cooperative Stackelberg game to model grid-to-
vehicle energy exchanges between a smart grid and plug-in electric
vehicle groups. Ref. [22] models the virtual electricity-trading
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process, in which the energy management centre acts as leader (e.g.
a virtual retailer) and offers virtual retail prices to followers (e.g.
DR devices). A two-level game is proposed in [4] to describe
interactions between multiple utility companies and residential
users. A non-cooperative game model is constructed to simulate
the interactions among utility companies in the upper level, while
an evolutionary game is formulated wherein each user chooses one
utility company to buy energy in the lower level. These
publications and our work all employ the Stackelberg game to
determine an optimal RTP in a microgrid. However, here the
followers are specified as CBs, and the lower level problem is
modelled with appliance-level details considering the correlated
weather uncertainties. This formulation is more practical and
accurate.

1.3 Contribution and paper organisation

Based on the given literature review, this paper presents a
Stackelberg game-based energy management model for a
microgrid and CBs therein. The main contributions of this paper
are threefold:

(i) A comprehensive DR-based energy management model for a
CB consisting of a HVAC system, a lighting system and PV arrays
is developed. The correlation between solar irradiance and
illuminance uncertainties, which is simulated by the Nataf
transformation-based 2M + 1 PEM with high accuracy and
computation speed, is incorporated into the model.
(ii) A bi-level model for the energy management of a microgrid
and RTP scheme setting is proposed. At the upper level, the MGO
determines the power dispatch and offers the RTP signals to CBs.
At the lower level, the CB adjusts its power consumption

responding to the RTP signals. The hierarchical interactions
between the MGO and CBs are modelled by a Stackelberg game.
(iii) The proposed model is reformulated into a mixed integer
linear programming (MILP) problem through three steps: a)
McCormick relaxation is employed to deal with bilinear terms in
the HVAC DR model; b) the optimality of DR problem in the
lower model is denoted by Karush–Kuhn–Tucker (KKT)
conditions and big-M disjunctive constraints; c) the bilinear terms
in the objective function of the upper model are linearised by using
the strong duality theory.

The remainder of this paper is organised as follows. In Section
2, the model description and formulation are introduced. The
solution methodology is presented in Section 3. Case studies and
numerical results are given in Section 4, followed by the
conclusion in Section 5.

2Model formulation
2.1 Model description

To have a clear and intuitive understanding of the bi-level model,
Fig. 1 presents the infrastructure of a microgird with Ncb consistent
CBs, and Fig. 2 depicts a flowchart of the model implementation
process.

(i) Step 1: The solar irradiance and illumination are predicted, and
the errors modelled by two representative probability distribution
functions.
(ii) Step 2: The Nataf transformation-based 2M + 1 PEM is applied
to simulate the correlated weather conditions which are the input
parameters in the DR model of CBs.
(iii) Step 3: The energy management problem is modelled by the
Stackelberg game, wherein the MGO acts as the leader and CBs the
followers..
(iv) Step 4: The bilinear terms in the HVAC DR model are dealt
with the McCormick relaxation. Then, the KKT conditions, big-M
disjunctive constraints and the strong duality theory are
successively employed to reformulate the bi-level model into a
MILP model. Finally, the optimal energy management scheme is
attained.

The framework of Stackelberg game-based energy management
bi-level model is presented in Fig. 3 and the detailed descriptions
of each entity are stated as follows:

(i) MGO: The MGO is an intermediary agent between the
wholesale market and consumers. In the wholesale market, the
MGO receives wholesale prices and trades with the ISO to balance
the supplies and demands. In the retail market, the MGO sets retail
prices to guide CBs to manage energy consuming optimally. The
microgrid-owned ESS enhances the flexibility and economic
performance of the microgrid.
(ii) CBs: The CBs, as followers, respond to the retail prices
propagated by the MGO considering the weather uncertainties and
make full use of PV outputs as well as schedule a HVAC system
and lighting systems in a coordinated manner for operation cost
minimisation.

As shown in Fig. 3, in the Stackelberg gaming process, MGO
acts as the leader, by propagating its strategy (i.e. retail prices ρt

in)
to the followers, that is, the CBs. After receiving the announced
price, each follower determines the best power-consumption
scheme (i.e. load power Pt

in), which is taken as feedback
information to the leader. Then, the leader re-optimises its strategy
and offers a new real-time retail price of electricity. The interaction
process is iterated until every player in the game obtains its most
satisfactory results. In other words, the Stackelberg equilibrium is
achieved and each player is not willing to deviate from this
equilibrium [23]. The corresponding gaming models of the two
players are presented with more details in the following sections.

Note that the model to be developed in this work is based on the
discrete-event system. Specifically, the operation cycle is divided

Fig. 1 System model for the microgrid with commercial buildings
 

Fig. 2 Implementation process of the proposed model
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into T periods, and the operation state in each period is assumed to
remain unchanged. Therefore, the state parameters at the instant t
can be used to describe the state during the time interval (t −1, t).

2.2 Model of MGO

The ESS in the microgrid is modelled as follows:

St = St − 1 + ηchaPcha, t −
Pdis, t

ηdis
(1)

0 ≤ Pcha, t ≤ xcha, tPcha
max (2)

0 ≤ Pdis, t ≤ (1 − xcha, t)Pdis
max (3)

Smin ≤ St ≤ Smax (4)

where (1) represents the changes of the energy storage of ESS
between two adjacent periods. Cons. (2) and Cons. (3) impose the
upper/lower limits on the charging and discharging power,
respectively. Cons. (4) denotes the limits on the ESS capacity.

As a leader in the Stackelberg game, the MGO needs to
maximise its profits, and the corresponding optimisation problem is
formulated as follows:

max ∑
t = 1

T

Ncbρt
inPt

in − ρt
wsPt

ws (5)

s . t . (1) − (4) (6)

ρt
min ≤ ρt

in ≤ ρt
max (7)

∑
t = 1

T

ρt
in/T ≤ ρave

in (8)

−Pmax
ws ≤ Pt

ws ≤ Pmax
ws (9)

Pt
ws + Pdis, t = Pcha, t + NcbPt

in (10)

where the retail price ρt
in is the decision variable. For simplicitity, it

is assumed that all the CBs share the same load power. The first
item in the objective function (5) denotes the income by selling
electricity to consumers, and the second item represents the
purchasing cost in the wholesale market. Cons. (7) maintains the
retail price within the interval [ρt

min, ρt
max] in each period. Cons.

(8) imposes an upper bound on the average value of the retail price
sequence to alleviate the market power of MGO [3]. Cons. (9)
restricts the range of trading power with the ISO, with positive
values indicating purchasing power from the wholesale market, and
negative values indicating selling power otherwise. Equation (10)
represents the electric power balance in the microgrid.

2.3 Model of CBs

A CB proposed here includes PV, inflexible loads, a HVAC system,
and a lighting system. The PV panel realises photoelectric
conversion, which is expressed as

Psol, t = τsol
eleAele

i
Et (11)

Electric loads are divided into inflexible loads and flexible ones
(e.g. a HVAC system and a lighting system), which could respond
to the RTP to adjust the power consumption with respecting the
corresponding comfort level.

a) The model of a HVAC system
As Fig. 4 shows, a typical commercial HVAC system model

consists of an Air Handling Unit (AHU) for the whole building and
a set of Variable Air Volume (VAV) boxes in each zone [7]. AHU
dampers, a cooling coil, and a Variable Frequency Drive (VFD) are
the three main components of the AHU. Returned air from the
zones and outside air are mixed by AHU dampers, then the mixed
air is cooled down by the cooling coil and further delivered to the
VAV box in each zone by the VFD. The damper in a VAV box is
used to adjust the rate of the supply air. The refrigeration power of
the HVAC system is mainly affected by the refrigeration
temperature and the air flow rate, which are considered as the two
controllable variables in the model of the HVAC system. 

It is assumed that a CB has N zones. For each zone i, the
thermal dynamic model is stated as follows:

cairρairV
i dθt

i

dt
= cairmHVAC, t

i (θt
cool − θt

i)

+B
i(θt

out − θt
i) + Qsolar, t

i + Qinfle, t
i + Qlight, t

i + Qcrowd, t
i

(12)

Compared with other heat resources, the influence of the heat
transfer between neighbouring zones is so small and can then be
neglected in the above equation. In order to simplify the
optimisation problem, the thermal dynamic differential equation
can be transformed into the difference equation considering the
slow property of heat dissipation process and temperature changes
in the building: (see (13)) . The solar radiation heat Qsolar, t

i  for each
zone in the building is calculated as follows:

Qsolar, t
i = Fwin

i
EtSshe

i (14)

The lighting system and inflexible loads convert part of electric
energy into thermal energy during working process, and
accommodate the constraints:

Fig. 3 Framework of the Stackelberg game based energy management
bilevel model

 

Fig. 4 Schematic of a typical HVAC system
 

cairρairV
i θt

i − θt − 1
i

Δt
= cairmHV AC, t

i θt
cool − θt

i

+B
i(θt

out − θt
i) + Qsolar, t

i + Qin f le, t
i + Qlight, t

i + Qcrowd, t
i

(13)
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Qlight, t
i = λlightPlight, t

i (15)

Qin f le, t
i = λin f lePin f le, t

i (16)

The heat dissipation of the crowd includes sensible heat and latent
heat, which can be expressed as

Qcrowd, t
i = ncrowd, t

i ϕkqsen + ncrowd, t
i ϕqlat (17)

In addition to the contributions to the indoor thermal comfort, a
HVAC has some impacts on the IAQ. Generally, the CO2
concentration serves as an index for measuring the IAQ [24].
Similar to the building thermal dynamic process, the CO2
concentration dynamic difference model can be expressed as:

ρairV
i Ct

i − Ct − 1
i

Δt
= mHV AC, t

i Ct
mix − Ct

i + Ccrowd, t
i (18)

where Ct
mix = δ

∑i = 1

N
mHV AC, t

i Ct
i

∑i = 1

N
mHV AC, t

i
+ (1 − δ)Ct

out is the mixed CO2

concentration; δ ∈ 0, 1  represents the damper position in the
AHU.

For each zone, the indoor thermal comfort range and air quality
range are, respectively, constrained by:

θmin ≤ θt
i ≤ θmax (19)

Cmin ≤ Ct
i ≤ Cmax (20)

The power consumption associated with a HVAC system broadly
results from the cooling coil and the supply fan [11, 14, 25], which
can be expressed as

PHVAC, t = Pcoil, t + Pfan, t (21)

Pcoil, t =
cair ∑i = 1

N
mHV AC, t

i θt
mix − θt

cool

ηCOP
(22)

Pfan, t = k2 ∑
i = 1

N

mHV AC, t
i

2

+ k1 ∑
i = 1

N

mHV AC, t
i + k0 (23)

where θt
mix = δ

∑i = 1

N
mHV AC, t

i θt
i

∑i = 1

N
mHV AC, t

i
+ (1 − δ)θt

out represents the

temperature of mixed air before entering the cooling coil. The input
variables of the CB HVAC system in each period are denoted by
ut = mHV AC, t

1 , mHV AC, t
2 , …, mHV AC, t

N , θt
cool , which accommodate the

following constraints:

mHV AC
min ≤ mHV AC, t

i ≤ mHV AC
max (24)

∑
i = 1

N

mHV AC, t
i ≤ MHV AC

max (25)

θmin
cool ≤ θt

cool ≤ θmax
cool (26)

Further, assume that N zones have the same system parameters,
thus (18) is simplified into:

ρairV
i Ct

i − Ct − 1
i

Δt
= mHV AC, t

i (1 − δ) Ct
out − Ct

i + Ccrowd, t
i (27)

Similarly, (22) is simplified into:

Pcoil, t =
cairNmHV AC, t

i δθt
i + (1 − δ)θt

out − θt
cool

ηCOP
(28)

as well as (23) is:

Pfan, t = k2N
2
mHV AC, t

i 2
+ k1NmHV AC, t

i + k0 (29)

b) The model of a lighting system
The zonal illumination could be provided by the building

lighting system and solar illumination. Given that the CB
concerned is able to make the best of daylight, the lighting system
could act as curtailable loads to participate in DRM. Under the
retail price signal, the zonal illumination is assumed to stay within
a certain range responding to the RTP [13, 26]. Thus, the lighting
illumination needed at time t is expressed as

ILmax ≥ ILin, t
i + ILout, t ≥ ILmin (30)

The corresponding electric power of a lighting system is modelled
as

ILin, t
i

RlightFin
i = Plight, t

i (31)

2.3.1 Energy optimal management model: To have a
coordinated schedule of DR resources, the CB aims at minimising
its costs of purchasing electricity according to RTP signals. The
optimal energy management model can be expressed as

min ∑
t = 1

T

ρt
inPt

in (32)

s . t . (11) − (31) (33)

−Pmax
in ≤ Pt

in ≤ Pmax
in (34)

Pt
in + Psol, t = ∑

i = 1

N

Pin f le, t
i + ∑

i = 1

N

Plight, t
i + PHVAC, t (35)

where Const. (34) restricts the exchange power between the MGO
and consumers, with the positive value indicating the consumer
purchasing power from the retailer, and the negative value
indicating the consumer selling power. Const. (35) describes the
electric power balance in the CB.

2.4 Correlated solar irradiance and illuminance uncertainties

As for the lower level problem, the solar irradiance has some
impacts on the HVAC refrigeration output and PV output power
while the solar illuminance influences the lighting system loads.
Generally, there is a strong positive correlation between the solar
irradiance and illuminance. Conventional independent sampling of
above two parameters limits the practical application of the model.
Here, the Nataf transformation-based 2M + 1 PEM is applied to
deal with the correlated uncertainties.

2.4.1 Nataf transformation: The Nataf transformation is
employed to transform the input random variables into independent
standard normal variables as a basis input for the 2M + 1 PEM
regardless of how the input random variables are distributed.

Supposing a system consisting of M correlated input random
variables I = [I1, I2,…, IM] with any arbitrary type of marginal
distributions, the input variables can be transformed into M
dependent standard normal vectors Z = [Z1, Z2,…, ZM] as follows
[27]:

Zi = Φi
−1

Fi Ii (36)

where Fi denotes the cumulative distribution function (CDF) of Ii,
Φi denotes the CDF of Zi. By reverting (36), I could be derived
from Z:

Ii = Fi
−1 Φi Zi (37)
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The correlation matrix CI of the correlated input variables I and the
corresponding correlation matrix CZ of the dependent standard
normal variables Z can be, respectively, expressed as:

CI =

1 ρ12 ⋯ ρ1m

ρ21 1 ⋯ ρ2m

⋮ ⋮ ⋱ ⋮

ρm1 ρm2 ⋯ 1

(38)

CZ =

1 ρ′12 ⋯ ρ′1m

ρ′21 1 ⋯ ρ′2m

⋮ ⋮ ⋱ ⋮

ρ′m1 ρ′m2 ⋯ 1

(39)

where ρi j can be obtained based on the historical data and ρi j′  can
be transformed from ρi j according to the specific function
relationship given in [28].

The matrix Cz is symmetric by definition, and thus can be
decomposed by the Cholesky decomposition:

Cz = LL
T (40)

where L is a lower triangular matrix whose inverse matrix B is used
in (41) to get the independent standard normal vectors S:

S = BZ (41)

Thus far, the Nataf transformation is built completely.

2.4.2 2M + 1 PEM: The 2M + 1 PEM developed in [29]
concentrates first four central moments of each input random
variable Ii, namely its mean, variance, skewness, and kurtosis, into
three concentrations. The kth concentration (Ii,k, ωi,k) of Ii is
defined as a pair of a location Ii,k and weight coefficient ωi,k.
Assuming that Y represents the response function of the model, the
location is the kth value of variable at which the response function
Y is evaluated, while the weight coefficient accounts for the
relative importance of this evaluation in the final output result [30].

The location Ii,k is given by:

Ii, k = μi + ξi, kσi i = 1, 2, …, M, k = 1:3 (42)

where µi and σi are the mean and standard deviation of Ii,
respectively. ξi, k is the standard location [29, 31]:

ξi, k =

λi, 3

2
+ ( − 1)3 − k

λi, 4 −
3
4

λi, 3
2 k = 1, 2

0 k = 3

(43)

where λi,3 and λi,4 are coefficients of skewness and kurtosis,
respectively, and are stated as follows:

λi, 3 = E (Ii − μi)
3 /σi

3

λi, 4 = E (Ii − μi)
4 /σi

4
(44)

The weight coefficient ωi,k can calculated by:

ωi, k =

( − 1)3 − k

ξi, k(ξi, 1 − ξi, 2)
k = 1, 2

1
M

−
1

λi, 4 − λi, 3
2 k = 3

(45)

Then, the result O of the model can be expressed as:

O = ω0Y μ1, μ2, ⋯μi, ⋯, μM +

∑
i = 1

M

∑
k = 1

3

ωi, kY μ1, μ2, ⋯Ii, k, ⋯, μM

(46)

To sum up, the procedures for the Nataf transformation-based 2M 
+ 1 PEM are stated as follows.

(i) For independent standard normal variables, mean, variance,
skewness, and kurtosis are set as 0, 1, 0, and 3, respectively.
Locations and weight coefficients could be calculated according to
Eqns. (42)–(45).
(ii) The locations of independent standard normal variables could
be transformed into those of input random variables according to
Eqns. (36)–(41).
(iii) The result of the model can be obtained by weight coefficients
of independent standard normal variables in step 1 and locations of
input random variables in step 2.

3Solution methodology
Quite a few methods are available for solving a multi-objective
optimisation problem. The Multi-Objective Particle Swarm
Optimisation (MOPSO) algorithm is employed to obtain the
optimal solution set of the optimisation problem in [32, 33], and
the membership function-based trade-off solution is then taken as
the final solution. Nevertheless, the solution such attained is just an
approximate optimal one.

The multi-objective optimisation problem presented here is
essentially a typical bi-level model, and is commonly reformulated
as a mixed-integer linear programming (MILP) model using KKT
conditions or dual problems to represent the optimality of the lower
level problem [34, 35]. To handle the bilinear items in the lower
level problem, the McCormick relaxation is first employed to
realise the linearisation of the constraints in the lower level model.
Compared with heuristic algorithms, the proposed algorithm can
converge to the optimal solution in a finite number of steps and can
reach the equilibrium point efficiently.

Here, the proposed bi-level model is reformulated into a
standard MILP problem which can be solved efficiently by off-the-
shelf commercial solvers.

3.1 McCormick relaxation for HVAC model

The McCormick relaxation replaces each bilinear term or quadratic
term with an auxiliary variable and additional four sets of
constraints [36]. In HVAC model, there exist three bilinear terms,
for example, mHV AC, t

i θt
cool, mHV AC, t

i θt
i and mHV AC, t

i Ct
i, and one

quadratic term mHV AC, t
i2 , which can be, respectively, replaced by

πHVACcool, t
i , πHVACin, t

i  and πHVACco2, t
i , πHV AC2, t

i . Therefore, (13), (27)
and (28), (29) can be reformulated as: (see (47)) 

ρairV
i Ct

i − Ct − 1
i

Δt
= mHVAC, t

i (1 − δ)Ct
out − (1 − δ)πHVACco2, t

i

+ Ccrowd, t
i

(48)

cairρairV
i θt

i − θt − 1
i

Δt
= cair πHVACcool, t

i − πHVACin, t
i

+B
i

θt
out − θt

i + Qsolar, t
i + Qin f le, t

i + Qlight, t
i + Qcrowd, t

i

(47)
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Pcoil, t =
cairN δπHVACin, t

i + (1 − δ)mHV AC, t
i θt

out − πHVACcool, t
i

ηCOP
(49)

Pfan, t = k2N
2
mHV AC2

i + k1NmHV AC, t
i + k0 (50)

The constraints for auxiliary variables are formulated as follows:

πHVACcool, t
i ≥ mHV AC, t

i θmin
cool + mHV AC

min
θt

cool − mHV AC
min

θmin
cool

πHVACcool, t
i ≥ mHV AC, t

i θmax
cool + mHV AC

max
θt

cool − mHV AC
max

θmax
cool

πHVACcool, t
i ≤ mHV AC, t

i θmin
cool + mHV AC

max
θt

cool − mHV AC
max

θmin
cool

πHVACcool, t
i ≤ mHV AC, t

i θmax
cool + mHV AC

min
θt

cool − mHV AC
min

θmax
cool

(51)

πHVACin, t
i ≥ mHV AC, t

i θmin + mHV AC
min

θt
i − mHV AC

min
θmin

πHVACin, t
i ≥ mHV AC, t

i θmax + mHV AC
max

θt
i − mHV AC

max
θmax

πHVACin, t
i ≤ mHV AC, t

i θmin + mHV AC
max

θt
i − mHV AC

max
θmin

πHVACin, t
i ≤ mHV AC, t

i θmax + mHV AC
min

θt
i − mHV AC

min
θmax

(52)

πHVACco2, t
i ≥ mHV AC, t

i Cmin + mHV AC
min

Ct
i − mHV AC

min
Cmin

πHVACco2, t
i ≥ mHV AC, t

i Cmax + mHV AC
max

Ct
i − mHV AC

max
Cmax

πHVACco2, t
i ≤ mHV AC, t

i Cmin + mHV AC
max

Ct
i − mHV AC

max
Cmin

πHVACco2, t
i ≤ mHV AC, t

i Cmax + mHV AC
min

Ct
i − mHV AC

min
Cmax

(53)

πHVAC2, t
i ≥ 2mHV AC

min
mHV AC, t

i − mHV AC
min 2

πHVAC2, t
i ≥ 2mHV AC

max
mHV AC, t

i − mHV AC
max 2

πHVAC2, t
i ≤ mHV AC, t

i mHV AC
min + mHV AC

max
mHV AC, t

i − mHV AC
max

mHV AC
min

(54)

3.2 KKT conditions of the lower model

When the retail prices are fixed, the lower model would be
transformed into a linear problem, and its optimality can be
represented by KKT conditions [3]. Generally, given an
optimisation model P1:

P1:

min f(x)

s . t . h(x) ≤ b

g(x) = d

(55)

Then, the corresponding Lagrange function Γ(x) and KKT
conditions are formulated as follows:

Γ(x) = f (x) + μT[h(x) − b] + λ
T[g(x) − d]

d f (x∗)
dx

+
∂h(x∗)

∂x

T

μ + (
∂g(x∗)

∂x
)T

λ = 0

μT[h(x∗) − b] = 0

μ ≥ 0

(56)

where μ is the vector of dual variables of h(x), λ is the vector of
dual variables of g(x), x*is the optimum of P1. In the lower level of
our model, Consts. (19)–(20), (24)–(26), (30), (34), (51)–(54) are
the inequality constraints, and (21), (31), (35), (47)–(50) are the
equality constraints. All the above constraints need to be
incorporated into KKT conditions.

The complementary slack constraints in (56) could be linearised
into disjunctive constraints (57) using Fortuny–Amat
transformation [37]:

0 ≤ μ ≤ Mz

0 ≤ b − h(x∗) ≤ M(1 − z)
(57)

where M is a positive constant and big enough to avoid a smaller
boundary on the original and the dual variables. z is an auxiliary
binary variables vector.

3.3 Linearising the bilinear item in objective function (58)

According to the strong dual theory, the objective value of a linear
programming problem is equal to its dual problem at the optimal
solution. Thus, the bilinear item ρt

inPt
in in objective function (5)

could be represented by (see (58)) .

4Case studies and numerical results
The microgrid with three medium-sized office buildings is
employed to demonstrate the features of the proposed model. Each
office building has eight zones. The hourly retail price is assumed
to be from 0.6 to 1.3 times the wholesale price at the corresponding
period, and the upper bound of average retail price is assumed to be
2.6 ￠/kW. The wholesale price is taken from the PJM website
[38]. The correlation matrix CI for solar irradiance and illuminance

is assumed as 
1 0.7

0.7 1
 and their forecast values are given in

Fig. 5. It is assumed that the forecast values of solar irradiance are
normally distributed with a variance of 0.6 and solar illuminance is
characterised by a Rayleigh distribution with a variance of 0.6. The
correlation matrix CZ of the dependent standard normal variables

transformed from CI is 
1 0.7098

0.7098 1
. 

The area of PV array at the roof of each CB is 200 m2, and the
PV generation efficiency is set as 0.8. The HVAC system

−ρt
inPt

in =

(cairρairV
i
θ0

i + B
i
θ1

out + Qsolar, 1
i + Qin f le, 1

i + Qcrowd, 1
i )λ4, 1 + (ρairV

i
C0

i + Ccrowd, t
i )λ5, 1

+ ∑
t = 2

24

{(Bi
θt

out + Qsolar, t
i + Qin f le, t

i + Qcrowd, t
i )λ4, t + (Ccrowd, t

i )λ5, t}

(∑
i = 1

N

Pinfle, t
i − Psol, t)λ3, t + k0λ7, t − mHVAC

min
μ1, t + mHVAC

max
μ2, t + MHVAC

max
μ3, t

−θminμ4, t + θmaxμ5, t − θmin
cool

μ6, t + θmax
cool

μ7, t − Cminμ8, t + Cmaxμ9, t + (ILmax − ILout, t)μ10, t + (ILout, t − ILmin)μ11, t

+ ∑
t = 1

24

+ Pmax
in

μ12, t + Pmax
in

μ13, t + mHVAC
min2

μ14, t + mHVAC
max2

μ15, t − mHVAC
max

mHVAC
min

μ16, t

+mHVAC
min

θmin
cool

μ17, t + mHVAC
max

θmax
cool

μ18, t − mHVAC
max

θmin
cool

μ19, t − mHVAC
min

θmax
cool

μ20, t

+mHVAC
min

θminμ21, t + mHVAC
max

θmaxμ22, t − mHVAC
max

θminμ23, t − mHVAC
min

θmaxμ24, t

+mHVAC
min

Cminμ25, t + mHVAC
max

Cmaxμ26, t − mHVAC
max

Cminμ27, t − mHVAC
min

Cmaxμ28, t

(58)
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parameters are adapted from [12, 39]. The generation rate of CO2
is 0.3L/s/person, and indoor permissible CO2 concentration ranges
from 0.3 to 0.85 [12]. The comfortable indoor temperature is
assumed to be within [22°C, 24.5°C] with additional system
parameters presented in Table 1. 

4.1 Economic analysis and energy management results
comparison under different pricing models

To analyse the performance of the proposed model, the following
three pricing models are applied.

(i) Mode 1: The proposed Stackelberg game-based RTP is
employed. CBs manage loads to respond to the RTP.
(ii) Mode 2: The fixed retail price is employed. CBs have no
incentives to adjust load demands.

(iii) Mode 3: The TOU pricing is employed. CBs manage loads to
respond to TOU prices.

Mode 1 represents the proposed energy management model;
Mode 2 represents the situation without implementation of DRM;
and Mode 3 represents a definite retail price scheme. Daily revenue
of MGO and daily payment of each CB under these three pricing
models are listed in Table 2. In the case without implementing DR
strategies, Mode 2 is the least economical, in which MGO gains the
least revenues and CBs pay most for purchasing electricity.
Compared with Mode 2 and Mode 3, the revenue of MGO in Mode
1 slightly increases, whereas the purchasing electricity cost for the
CB is yet the least, and this shows that the proposed model attains
a win-win solution for both MGO and consumers. 

In order to have an intuitive understanding of the proposed
energy management schemes, the power scheduling details of
Mode 1 and Mode 2 are shown in Figs. 6–9. With a comprehensive
consideration of electricity prices and load schedules in Figs. 6 and
7, it is notable that in Mode 1, MGO prefers to lower retail prices
in the midnight and early hours of the morning, but raises retail
prices in other periods, which could facilitate consumers to adjust
power consumption efficiently. 

As observed from Fig. 6, in the CBs side, the HVAC system is
active in responding to the RTP in Mode 1, with the tendency of
working in low retail price periods to reduce costs. Fig. 10 shows
the main heat power in the CB in Mode 1. During daylight, there is
more solar irradiance, indoor heat sources, and higher outdoor
temperature, all speeding up the rise of indoor temperature and
further increasing HVAC loads. However, under the guidance of
retail price signals, the HVAC system works more in early hours of
the morning to precool the zones, and thus could relieve the
electricity demands of high retail prices during the day. Besides, it
is in the consumers' best interest to sell the surplus of PV
generation to MGO for more benefits. In contrast, Fig. 8 indicates
that CBs have no ability to shift loads to low retail price periods in
Mode 2. Hence, the HVAC system mainly works during high retail
price periods without bringing economic benefits for CBs further
for the MGO. Compared with Mode 2, it is noteworthy that the
proposed pricing model has a slight impact on the lighting system.
In both two pricing models, the lighting system, as the curtailable
load, effectively uses the daylight to reduce the loads during the
day on the premise of meeting the light needs. 

In the MGO side, Figs. 7 and 9 indicate that in both modes, the
electric energy is purchased by MGO from the wholesale market to
charge the ESS or supply to the consumers during low wholesale
price periods. During high wholesale price periods, ESS discharges
to the wholesale market for revenues increasing. Further in Mode

Fig. 5 Solar irradiance and illumination of a typical summer day
 

Table 1 System parameters
Parameter Value Parameter Value
Pmax

in 500 B 0.965

Pmax
ISO 800 Fwin 170

Pcha
max 400 Sshe 0.3

Pdis
max 400 λlight 0.9

Smax 2200 λin f le 0.3
Smin 80 ϕ 0.9
cair 1.005 k 0.05
ρair 1.29 qsen 0.065
V 800 qlat 0.11746

 

Table 2 Comparison of revenues attained by MGO and
power purchasing costs of a CB under three modes
Mode Revenues of MGO/$ Power purchasing costs of a

CB/$
mode 1 77.312 85.715
mode 2 70.449 96.237
mode 3 72.815 87.618

 

Fig. 6 Daily power schedules of the office building in Mode 1
 

Fig. 7 Daily power schedules of the MGO in Mode 1
 

Fig. 8 Daily power schedules of the office building in Mode 2
 

Fig. 9 Daily power schedules of the MGO in Mode 2
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1, the CBs implement DR strategies for less purchasing power
from the wholesale market during high retail prices period, with the
result of revenues increase.

4.2 Analysis of solar irradiance and illuminance uncertainties
with correlation

The solar irradiance relates to the HVAC refrigeration output and
PV output power while the solar illuminance influences the
lighting system loads. In Table 3, the revenues of the MGO and the
power purchasing cost of each CB with and without considering
the correlations among uncertainties are listed. As observed from
Table 3, the results are a bit different in two cases. If the correlation
is neglected, it seems that the model outputs better results for CBs,
yet causes an overly optimistic illusion for users' actual usage.
Therefore, the correlations between solar irradiance and
illuminance should be considered for a more practical model. 

4.3 Demand response capacity analysis

It is assumed that indoor temperature comfortable range and
allowable minimum lighting requirements represent the DR
capacity of the HVAC system and the lighting system, respectively.
This part shows how demand response capacity influences the
energy management.

The numerical results at different indoor comfortable levels are
enumerated in Table 4. The larger temperature comfortable range
means HVAC loads can be adjusted more flexibly, and thus the
costs of purchasing power for consumers become less. However,
the limits of the HVAC flow rates and cooling coil temperature
alleviate the impacts of DR capacity, resulting that the consumers'
costs tend to be stable afterwards. As for the MGO, larger HVAC
DR capacity contributes to a more flexible energy scheduling in the
microgrid, and theoretically, it would be beneficial to the MGO's
revenue to a certain extent. However, the situations appear where a
smaller DR capacity causes more MGO's revenues. This is because
consumer's purchasing power costs are the main stream of MGO's
revenue, and when the costs go up too much, the revenues would
most likely increase. 

In Table 5, it shows that larger DR capacity of lighting system
can be propitious to both MGO and consumers. As the allowable
minimum lighting decreases, the revenues of MGO increase while
the costs of CBs decline gradually. This is reasonable because the
lower allowable minimum lighting allows the CB to curtail more
lighting power at the peak price periods for cost saving.
Meanwhile, the MGO also has the ability to reduce power
purchasing from the wholesale market. 

4.4 Sensitivity analysis

In this part, the impacts of ESS capacity and maximum average
retail price of electricity will be analysed.

For the upper level, as the key device for energy scheduling, the
ESS plays an important role in energy optimisation management.
As shown in Fig. 11, consistent with the changes in the ESS
capacity, the revenues of MGO increase progressively, whereas the
cost of the CB for purchasing electricity only decreases in a
particularly small range. It is understandable that a larger capacity
of ESS facilitates MGO to purchase more electricity at low price
periods and avoid peak prices, thus brings more benefits for MGO.
It would also indirectly lower the electricity purchasing cost of
CBs to a certain extent, as MGO has a relatively lower cost of
purchasing electricity from the wholesale electricity market. 

The retail price signal is a vital link in Stackelberg game-based
energy management. Fig. 12 indicates that as the maximum
average retail price of electricity goes up, the revenue of MGO
rises since the costs of purchasing electricity by CBs also increase.
Interestingly, there is only a slight increase in the purchasing
electricity costs by CBs with the increase of the maximum average
retail price of electricity, and this means that the proposed model
could effectively protect the interests of CBs, at least to some
extent. Besides, in order to avoid excessive high costs of electricity
for consumers, it is necessary to set an appropriate upper bound on
the retail price of electricity in practical applications. 

5Conclusions
This paper proposes a Stackelberg game-based energy management
model for a microgrid with CBs. The loads in CBs are divided into
inflexible loads and flexible loads such as a HVAC system and a
lighting system. The infrastructure of a microgrid with CBs and the
model of each component are presented first. Then the Nataf
transformation based 2M + 1 PEM is employed to simulate the
correlated solar irradiance and illuminance uncertainties. Further,
McCormick relaxation is applied to deal with bilinear and
quadratic terms. Then, the bilevel model is transformed into a
single-level MILP model by KKT conditions and strong dual
theory. The performance of the developed model is assessed

Fig. 10 Heat power in the commercial building in Mode 1
 

Table 3 Comparison of MGO's revenue and CB's power
purchasing costs with and without correlations

Revenues of
MGO/$

Power purchasing costs
of a CB/$

with correlations 77.312 85.715
without
correlations

75.185 66.786

 

Table 4 Analysis of the HVAC DR capacity
Allowable indoor
temperature range/°C

Revenues of
MGO/$

Costs of CB/$

24–24.5 81.962 107.710
23–24.5 77.217 86.513
22–24.5 77.312 85.715
22–24.7 73.613 50.032
22–25 73.643 40.534
21–26 73.658 40.525

 

Table 5 Analysis of the lighting system DR capacity
Allowable minimum
lighting conditions/lux

Revenues of MGO/$ Costs of CB/$

300 76.024 90.388
290 76.468 88.920
280 76.760 87.453
270 77.312 85.715
260 78.089 84.565
250 78.993 83.219

 

Fig. 11 Sensitivity analysis of ESS capacity
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through case studies of a microgrid with three office buildings.
Simulation results have demonstrated that (i) Stackelberg game
based RTP mechanism helps MGO and CBs achieve a win-win
solution; (ii) the numerical results are more accurate with the
impacts of correlations between solar irradiance and illuminance
uncertainties considered; (iii) a larger DR capacity contributes to a
more flexible energy management; (iv) the effects of ESS capacity
are obvious on MGO power scheduling but inapparent on CBs
demand response, while the upper bound of average retail price
affects energy management on both MGO and consumers.

The impacts of power network constraints on the Stackelberg
game based energy management are not investigated in this paper,
and will be examined in our future research efforts.
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