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Abstract— The wide deployment of renewable energy resources, 

combined with a more proactive demand-side management, is 

inducing a new paradigm in both power system operation and 

electricity market trading, which especially boosts the emergence 

of the peer-to-peer (P2P) market. A more flexible local market 

mechanism is highly desirable in response to fast changes in 

renewable power generation at the distribution network level. 

Moreover, large-scale implementation of P2P energy trading 

inevitably affects the secure and economic operation of the 

distribution network. This paper presents a new P2P electricity 

trading framework with distribution network security constraints 

considered using the generalized fast dual ascent method. First, an 

event-driven local P2P market framework is presented to facilitate 

short-term or immediate local energy transactions. Then, the 

sensitivity analysis of nodal voltage and network loss with respect 

to nodal power injections is used to evaluate the impacts of P2P 

transactions on the distribution network, which ensures the secure 

operation of the distribution system. Thereby, the external 

operational constraints are internalized, and the cost of P2P 

energy trading can be appropriately allocated in an endogenous 

way. Moreover, a generalized fast dual ascent method is employed 

to implement distributed market-clearing efficiently. Finally, 

numerical results indicate that the proposed model could 

guarantee secure operation of the distribution system with P2P 

energy trading, and the solution method enjoys good convergence 

performance. 

 

Index Terms —peer-to-peer (P2P) energy trading, event-driven, 

market clearing, generalized fast dual ascent. 

I.  INTRODUCTION 

All over the world, the self-consumption of solar power is 

currently highly encouraged to reduce the investment demand 

and operational losses of the transmission and distribution 

network. As an extension to self-consumption, the emerging 

peer-to-peer (P2P) energy trading enables prosumers to trade 

energy using local distribution systems, which may relieve the 

burden on the transmission grid. As a matter of fact, the 

decentralized P2P energy trading market is becoming a feasible 

option (e.g., Brooklyn Microgrid [1], Plico [2]) nowadays, 

thanks to new advances in information and communication 

technology [3]. 

The chief purpose of P2P sharing is to change the traditional 

centralized hierarchical control mode of power systems and 

allow for the direct communication and supply of energy 
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among ubiquitous distribution-level prosumers with distributed 

energy resources (DERs) [4]. In terms of the P2P mechanism 

design, existing P2P energy trading methods can be divided into 

four groups: 1) auction theory, 2) game theory, 3) constrained 

optimization, and 4) blockchain. An auction-based model 

involves a market where several buyers and sellers seek to 

interact with one another for trading their goods and 

simultaneously achieve the objectives of balancing local 

generation and demand [5], [6] as well as improving prosumers' 

engagement [7]. An auction-based market is usually difficult to 

model explicitly because of the stochastic bidding behaviors of 

its participants. Thus, the game theory is invoked to model 

behaviors and decisions of P2P market participants through 

coalitional and non-cooperative games. The application of non-

cooperative Nash games in P2P trading can be found for 

encouraging prosumers’ participation in the trading[8], 

increasing economic benefits to individual participants [9], 

[10], and clearing bilateral contracts with specifying energy 

trades and prices [11]. On the other hand, a coalitional game-

based model [12], [13] usually focuses on fairness in 

distributing the revenue obtained by forming prosumers as a 

grand coalition. To further promote market efficiency in all the 

diversified game-based models, a few constrained optimization 

techniques have been used to design P2P energy trading 

schemes. Specifically, the P2P market clearing is usually 

formulated as a social welfare maximization problem (e.g., [6], 

[14], [15] and [16]) and is solved with the most popular solution 

technique, i.e., alternating direction method of multipliers 

(ADMM), which is adopted to solve the problem as in [9], [10], 

[15], [17] and [18]. Currently, the blockchain with the inherent 

decentralization characteristic has profound applications in P2P 

trading, leading to the establishment of several blockchain-

based platforms for P2P energy trading in recent years. A 

variety of blockchain-based technologies, e.g., smart contract 

[19], consortium blockchain [20], Hyperledger IBM [21], are 

invoked to build the P2P energy trading platform which offers 

secure and transparent energy trading. In the meantime, the P2P 

matching mechanisms can also be divided into two categories, 

namely peer-centric (see [11], [14]) and system-centric (see 

[16], [18] and [21]), according to the degree of decentralization 

and topology. The system-centric model possesses a 

supervisory entity that collects and clears the bids and offers 

submitted by market agents in a centralized manner [18], like 
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pool-structured wholesale electricity markets. The peer-centric 

approach, on the other hand, provides more options to consider 

prosumers’ preferences and offers distributed decision-making 

protocols to preserve agents’ privacy [14].  

Although the above mentioned P2P energy trading model 

could work, the large-scale implementation of P2P energy 

trading inevitably affects the economic and secure operation of 

the distribution network. In addition, most of the existing 

studies ignore the critical physical constraints such as the power 

flow and nodal voltage constraints, which make them not 

practical for real-world applications. To consider all the 

network constraints, sensitivity analysis is employed to 

evaluate the impacts of P2P transactions in [5] and [7], but how 

to reasonably recover the extra cost associated with the network 

constraints is not explicitly described. In [9] and [10] the game 

model in [17] is extended, with network constraints embedded 

into the energy management model and a Nash bargaining or 

noncooperative game theory-based P2P transaction model 

presented respectively; both methods in [9] and [10] could offer 

solutions that satisfy axioms of symmetry and Pareto optimality. 

Nonetheless, there exist some scenarios where the P2P 

transaction players with weak bargaining power would bear 

extra costs. In this sense, internalizing the binding constraints 

in an optimal power flow (OPF) model to present the scarce 

energy supply by extracting local marginal price (LMP) is 

paramount.  

Apart from the physical limits indicated above, the cost 

allocation associated with P2P energy trading is another 

research focus. There are broadly two kinds of cost modeling 

methods: exogenous cost-based allocation and endogenous 

cost-based allocation model. The former separates the market 

transaction from the power grid operation and estimates the ex-

post P2P transaction cost to be allocated, like the European 

power pool market. Authors in [22] exogenously allocate the 

network losses in a microgrid to the discharging battery storage 

at each node. The work in [18] intends to implement P2P energy 

transactions under network constraints and use the DC power 

flow model to estimate network losses. The latter remains 

nearly untouched in the literature, which is supposed to 

internalize external physical constraints by including network 

constraints in an OPF model and the P2P transaction cost are 

recovered based on the LMP. The work in [4] couples P2P 

interactions and distribution network operations as well as uses 

the distribution LMP to compute network usage fees that agents 

should pay to the distribution network owners. However, the 

agents’ privacy is not considered when solving the OPF 

problem in a centralized way in [4]. 

To protect the agents’ privacy as well as improve the system 

scalability, the distributed operation and control schemes have 

been extensively studied in recent years. In the literature, the 

Lagrangian relaxation-based method (LR-M) is widely applied. 

Specifically, the LR-M primarily includes the traditional LR 

[23], the auxiliary problem principle [24], ADMM [25], and 

analytical target cascading [26]. Generally, the LR-M algorithm 

suffers from a low convergence rate and an inconvenient 

parameter tuning process but fortunately, the duality theory 

shows that the Lagrangian multiplier update procedures in LR-

M can be viewed as ascent steps in the dual space that maximize 

the Lagrangian function regarding the Lagrange multipliers. 

Hence, the dual-based method is adopted to approximate the 

Lagrange multipliers in LR-M using the gradient-like methods 

or Newton-like methods, which leads to the development of 

several multiplier update procedures [27]. In the spirit of the 

Nesterov accelerated method (NAM), the fast dual ascent 

method is proposed in [28] and [29] where a Lipschitz constant 

to the dual function is used to quantify the curvature of the 

quadratic upper bound of the negative dual function. However, 

the quadratic upper bound with the same curvature in all 

directions of [28] and [29] could result in slow convergence, 

especially under ill-conditioned scenarios. The methods in [30] 

and [31] further generalize the fast dual ascent, which allows 

for a quadratic upper bound with different curvatures in 

different directions, and can approximate the dual function with 

faster convergence. 

With all the above, this paper presents a novel decentralized 

P2P energy trading model under network constraints using the 

generalized fast dual ascent (Gf-DA) method. In this paper, an 

event-driven mechanism is adopted to facilitate short-term or 

immediate local energy transactions. Comparisons among the 

key features considered in the existing literature against our 

proposed method are presented in Table I. The main 

contributions of this paper are listed as follows: 

1) The network constraints are included in the market-

clearing problem through the voltage and loss sensitivity 

method, to ensure secure operations of the power 

distribution system. In this sense, the external operational 

constraints are internalized, and the endogenous cost of 

P2P energy trading is reflected by the location marginal 

price derived from the market-clearing problem. 

2) A LR-based solution method is leveraged to clear the 

market in a distributed manner whereby a negotiation 

mechanism between the participants and market operator 

is provided using the LMP and then makes the clearing 

method applicable for the short-term P2P energy trading 

market proposed in this paper. 

3) The fast dual ascent method is applied to improve the 

convergence region and rate of the LR-M algorithm by 

generalizing the Lipschitz constant. A distributed 

framework is offered, which effectively protects agents’ 

privacy. 
TABLE I 

COMPARISON OF THE CONSIDERED FACTORS IN P2P ENERGY TRADING 

MODEL IN THE EXISTING LITERATURE AND THIS PAPER 

Refs. 
Network 

constraints  

P2P transaction 

cost allocation 

Agents’ privacy 

protects 

[4], [21]    

[5]    

[6], [11], [15], [16], [17], [19]    

[7],[9],[10],[13],[20]    

[8], [12]    
[14], [18], [22]    

This Paper    

The remainder of the paper is organized as follows: Section 

II introduces an event-driven market architecture for the 

proposed P2P market. Section III illustrates the problem 

formulation for the local P2P energy trading and a decentralized 

approach for the market clearing is provided in Section IV. A 

fast dual ascent method is explicitly presented then in Section 

V to accelerate the market clearing. Finally, in Section VI, the 

performance of the proposed model is evaluated through 

numerical analyses, and the key findings of the research are also 

summarized. 
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II.  THE FRAMEWORK OF AN EVENT-DRIVEN P2P MARKET 

An event-driven P2P market mechanism is designed at the 

distribution system level, which is expected to effectively 

accommodate the fluctuations and uncertainties in renewable 

generation outputs. Under this framework, three aspects of the 

market as follows are clarified. 

1) Market participants. All the energy entities, including 

industrial campuses, local energy communities, etc., can choose 

to participate in the local energy trading market as sellers or 

buyers according to their energy surplus or deficit. When 

certain conditions are met, the event driver automatically 

triggers market opening, clearing, and other operations. It is 

assumed there exists a neutral market operator who is 

responsible for market operation and clearing. 

2) Market operation rules. Assume that a day is divided 

into 144 periods with the market cycle as 10 minutes. The 

clearing result of the current period will be executed in the next 

period. Prosumers enter the market by sending transaction 

requests i.e., trading electricity, price information, and trading 

periods to the event drivers. Once the market is open, the 

operator will collect the state data of the distribution network 

and formulate the market-clearing problem. It is cleared in a 

distributed manner where each iteration becomes a new round 

of quotations or bids until the iteration converges or the market 

closes. It is assumed that the distribution network has the 

communication network responsible for the information 

exchange among prosumers and market operators. 

3) Event-driven rules. This market is event-driven referring 

to [16], as it is supposed to work as a backup trading platform, 

which is unnecessary to be opened permanently for the whole 

year and is affected by local transaction needs and seasonal 

events, such as high solar irradiance or energy shortages in 

regional grids. The event driver set the rules based on local 

weather conditions such as light intensity, wind speed, the 

number of trading members as well as the trading power in the 

market during both current and future periods. The proposed 

actions of the event driver include waiting, partial-clearance, 

complete-clearance, and so on. A brief introduction of the 

actions is given as follows: 

(1) Waiting: If there are only sellers or buyers in the market, 

or there are fewer participants and less trading power, the 

clearing action will not be performed and postpone the market 

clearance until the next period. 

(2) Partial-clearance: If there is a serious imbalance between 

selling and buying power, only part of the transaction requests 

will be cleared to lock the instant revenue so far and delay the 

rest of the market clearance to the next period. 

(3) Complete-clearance: Accept all the bids and offers to 

perform the standard market clearance. 

The event-driven rules should be transparent and 

indiscriminative to every member of the P2P market. The 

function of the event-driver can be implemented by the 

blockchain platform [19], i.e., Smart Contract, of which 

transparency and immutability are of great importance for P2P 

energy trading. In addition, it is worth noting that it is not our 

intention to cover every aspect of the aforementioned market 

model in a single paper. In this paper, we mainly focus on a 

more accurate and explicit market-clearing model as well as its 

solution method.  

III.  PROBLEM FORMULATION 

A.  Preliminary  

A radial distribution network is considered. Define i, j, and k 

as the indices of the nodes in the distribution network. Since 

each node just holds one prosumer, we abuse notations of the 

indices of nodes and denote i and j as the indices of prosumers. 

Consider a distribution network consisting of N prosumers who 

participate in the local P2P energy trading market. Each 

prosumer can be either a producer or a consumer at a given time 

instance. For example, it can act as a producer, when it 

discharges power to the distribution system, and as a consumer, 

when it charges power from the distribution system. Thus, the 

set of prosumers N can be divided into two groups: producers 

and consumers. Denote NS = {1, …, NS} as the set of producers 

and Nb = {1, …, Nb} the set of consumers. Obviously, 

S b= Ν Ν Ν and S b = Ν Ν . Note that vector, matrix, and 

set are shown in bold capital whereas the index, scalar, and 

element of the set are expressed in italics and lowercase 

hereinafter. 

B.  Consumer and Producer Models 

The characteristic of the prosumers’ behavior in the P2P 

energy trading market can be modeled by the concept of the 

utility function. Here, a quadratic utility function is considered 

which is corresponding to a linear decreasing marginal benefit. 

For each consumer j participating in the P2P transaction, the 

utility function is stated as follows: 
2 2( , ) ( ) ( - )p p q set

j j j j j j j j j jU p q p p q q  = − + −           (1) 

where 
p

j , 
p

j  and 
q

j  are the utility function parameters, 

which are the private information stored by consumers j. The 

first term in (1) is the utility function which represents the 

personal satisfaction or convenience for electricity usage. The 

second term is the cost of the injected reactive power, i.e., the 

cost caused by the derivation from the previous reactive power 
set

jq  in the P2P transaction. Similarly, the cost function of 

producer i is a quadratic convex function, which also includes 

the costs of active and reactive power: 
2 2( , ) ( - )p p q set

i i i i i i i i i iC p q a p b p q q= + +              (2) 

where 
p

ia , 
p

ib  and 
q

i are the cost function parameters for 

producer i. In addition, the consumers and producers should 

also comply with the local constraints. Thus, for prosumer 
iN , the local constraints can be described as: 

i i ip p p                             (3) 

i i iq q q                               (4) 

where ip / ip  are the upper/lower active boundary of prosumer 

i. Similarly, iq / iq  the upper/lower reactive boundary of 

prosumer i. 

C.  Voltage Sensitivity Calculation 

The injection model of power flow to node i is stated as, 

( )
*

i i ij jj
S V Y V


=  Ξ

                          (5) 

where Ξ = {1, …, NA} represents the set of nodes of the 

distribution network. i i iS P Q= + j  and iV  are the injected 
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complex power and voltage phasor of node i, respectively. ijY  

is the (i, j) element of the admittance matrix. According to Eqn. 

(5), the voltage sensitivity with respect to power injections can 

be calculated as follows. For any node iΞ , we have 

( )
*

*
*

0

1

ji i

ij j i ijj j
j j j

V i jS V
Y V V Y

i jP P P 

   
= + = 

=   
 Ξ Ξ

      (6) 

( )
*

*
*

0

1

ji i

ij j i ijj j
j j j

V i jS V
Y V V Y

i jQ Q Q 

   
= + = 

=   
 Ξ Ξ j

     (7) 

Obviously, Eqn. (6) is linear with respect to /i jV P   and 

* /i jV P  , and Eqn. (7) is linear with respect to /i jV Q   and 

/i jV Q  . Hence, voltage sensitivity can be easily obtained by 

solving the above linear equations. The derivatives of the 

voltage magnitude with respect to the active/reactive power 

injections can be calculated as follows. For the i-th node, 
*

2 * *2 i i i

i i i i i i

j j j

V V V
V VV V V V

P P P

  
=  = +

  
            (8) 

where Vi represents the voltage magnitude of node i. Note that 

the two terms on the right hand of Equation (8) are the 

conjugate of each other. As the derivative of the magnitude is a 

real number, the imaginary components must cancel each other 

out and hence  
*

1
Rei i

i

j i j

V V
V

P V P

  
=  

   

                                  (9) 

The sensitivity of voltage magnitude with respect to reactive 

power injection can be calculated similarly and can be 

formulated as 
*

1
Rei i

i

j i j

V V
V

Q V Q

  
=  

   

                                  (10) 

The voltage perturbations caused by the P2P energy trading 

can then be estimated by employing (8) and (9), which can be 

stated as: 
V V

P Q( , )V  +p q D p D q                      (11) 

where p and q respectively represent the vector of injected 

active and reactive power of the prosumers in the P2P energy 

trading market. 
V

PD and
V

QD are voltage sensitivity matrices, 

i.e., 
V

P ( , ) i

j

V
i j

P


=


D  and 
V

Q ( , )= i

j

V
i j

Q




D . 

D.   Loss Sensitivity Calculation 

The distribution system structure is assumed to be radial 

when calculating loss factors in this work. Therefore, the 

distribution system is of a tree structure, with the distribution 

substation node as the root of the tree. To facilitate the 

presentation, nodes and branches are numbered based on the 

following rules [32]: 

1) The index of a node must be greater than the counterparts 

of its parents. 

2) The root is numbered as 1 and all nodes are numbered 

from 1 to NA. 

3) The branch connecting to a child node i is numbered as 

Li-1 and thus the index of branches is from 1 to NA-1. 

if bus  belongs to sub-tree of nod1  ,
( , )

0  ,otherwi

e 

se

j i
B i j


= 


      (12) 

1 1
1

k kL Lr x
+ +
+ j

1 11k kP Q+ ++ j

1
k kL LP Q+ j

1 1
1

k kL LP Q
+ +
+ j

2kV +1kV +

 
Fig. 1. Single-line diagram of the branch Lk+1 

Define the line power flow from a parent node to a child 

node as positive. The line power flow Lk , as shown in Fig. 1, 

can be calculated by (13) and (14). 

1

1 2

( 1, ) ( 1, )
A A

j

k

N N
L

L j Loss

j k j k

P B k j P B k j P −

= + = +

= − +  + +      (13) 

1

1 2

( 1, ) ( 1, )
A A

j

k

N N
L

L j Loss

j k j k

Q B k j Q B k j Q −

= + = +

= − +  + +      (14) 

In addition, the losses over the line Lk can be attained as 
2 2

2

1

k kk

k

L LL

Loss L

k

P Q
P r

V +

+
=                            (15) 

2 2

2

1

k kk

k

L LL

Loss L

k

P Q
Q x

V +

+
=                           (16) 

It is assumed that the nodal voltage magnitudes across the 

distribution network remain unchanged during a slight load 

change at node i. Taking the partial derivatives of both sides 

of (15)-(16) with respect to power injections, the loss factor 

of line k with respect to the load at node i can be attained as: 

2

1

2 2
k

k k k

k k

L
L L LLoss

L L

i i i k

P Q rP
P Q

P P P V +

  
= +  

   

         (17) 

2

1

2 2
k

k k k

k k

L
L L LLoss

L L

i i i k

P Q rP
P Q

Q Q Q V +

  
= +  

   

         (18) 

2

1

2 2
k

k k k

k k

L
L L LLoss

L L

i i i k

P Q xQ
P Q

P P P V +

  
= +  

   

        (19) 

2

1

2 2
k

k k k

k k

L
L L LLoss

L L

i i i k

P Q xQ
P Q

Q Q Q V +

  
= +  

   

        (20) 

Taking the partial derivatives of both sides of (13)-(14) 

with respect to active and reactive power injections 

respectively, the load shift factors in (17)-(20) can be 

substituted and the linear equations with respect to loss 

factors then obtained. For example, the loss factor of line k 

with respect to the load at node i can be attained by: 

1

2
21

2
( 1, ) ( 1, )

k kA

k

k

L LN
LLoss Loss

L

j ki ik

rP P
P B k j B k j

P PV

−

= ++

  
=  −  + + + 

  
   

1

2
21

2
( 1, )

kA

k

k

LN
L Loss

L

j k ik

r Q
Q B k j

PV

−

= ++

 
+  − + 

 
  (21) 

The loss sensitivity vectors can be obtained by solving the 

above linear equations. Defining the partial derivatives of the 

total loss with respect to the bus generation as the summation 

of the loss factors of each line, and taking the derivatives of 
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active power loss with respect to the active injection as an 

example, we can attain 
1

P

P

1

=
kA

k

LN

Loss

L i

P

P

−

=




D                              (22) 

Thereby, the active and reactive losses, i.e., PLoss and QLoss, 

can be approximately formulated as: 
P P

P Q+LossP   D p D q                        (23) 

Q Q

P Q+LossQ   D p D q                        (24) 

where 
P

QD  is the vector consisting of derivatives of active 

power loss with respect to the reactive power injection. 
Q

PD  

and 
Q

QD  are the vectors consisting of derivatives of reactive 

power loss with respect to active and reactive injections, 

respectively 

E.  Optimization Model for P2P Energy Trading Market 

The P2P energy trading for the distribution network is 

formulated as a social welfare maximization problem as follows: 

,
min ( , ) ( , )i ii i

C U

 −  

p q
p q p q                   (25a) 

where   is the feasibility region of the injected active and 

reactive power, i.e., p and q. 

A local energy transaction will be physically fulfilled by 

leveraging the existing distribution lines and smart meters. In 

the meantime, the impacts caused by P2P transactions should 

be considered in the optimization model, namely the voltage 

magnitude constraints along with the power balance constraints.  

max min
ˆ ( ) ( , ) + V V V p,q V μ μ              (25b)  

( , ) 0 ( )Loss

i pi
p P p q − =                   (25c) 

( , ) 0 ( )Loss

i qi
q Q p q − =                   (25d)  

where V̂ is the vector of nodal voltage before implementing the 

P2P transactions. Eqn. (25b) imposes voltage magnitude limit 

on each node, where V  and V  are the vector of lower and 

upper limits of nodal voltage magnitude, respectively. maxμ and 

minμ  are the Lagrangian multipliers associated with voltage 

limits. Eqns. (25c) and (25d) respectively indicate the active 

and reactive power balances with which the Lagrangian 

multipliers, i.e., p  and q , are associated. 

IV.  MECHANISM DESIGN OF MARKET CLEARING 

The market-clearing problem in (25) can be solved in a 

centralized manner with a coordinator collecting all the 

information of prosumers. However, this will inevitably violate 

the privacy of agents, which is undesirable and unreasonable in 

a P2P market. Hence, a LR-based distributed solution method, 

referred to as LR-DM, is proposed to solve (25), where each 

agent solves its sub-problem locally with limited information 

exchange with the market operator. Due to the presence of 

spatially coupled constraints (25b), (25c), and (25d), problem 

(25) is decomposed into a series of sub-problem which can be 

solved in a distributed way. Here, we intend to excavate the 

specific meaning of LR-DM and take LMP as the crucial 

information to coordinate the prosumers.  

At first, the Lagrangian function is given as (26). 

max min( , , , , , ) ( , )- ( , )
b sp q i N i i i j N j j jU p q C p q   = p q μ μ  

                     ( )T

max
ˆ ( )+  +  −μ V V p,q V  

                    ( )T

min
ˆ ( )+  − −μ V V V p,q  

                     ( )- ( , )
b S

Loss

p i N i j N jp p P  +  −  p q  

( )- ( , )
b S

Loss

q i N i j N jq q Q  +  −  p q  (26) 

Assuming that the multipliers can be accurately estimated, 

then, the Lagrangian function can be solved in a distributed 

manner based on the principle of dual decomposition. For 

example, the prosumers solve their local problems after 

receiving the multipliers in the tth iteration: 
( ) ( ) ( ) ( ) ( ) ( )

max max
,

{ , }: argmin ( , , , , , )
n n

t t t t t t

n n p q
p q

p q  


= p q μ μ       (27) 

In the iteration procedures, the multipliers should be updated 

to guarantee the convergence to the optimum values of the 

primal problem. The sub-gradient method is used to update the 

values of multipliers, which is stated as: 
1=[ ]

p

t t

p p   + −                    (28a) 

1=[ ]
q

t t

q q   + −                   (28b) 

max

1

max max=[ ]t t + +− 
μ

μ μ                (28c) 

min

1

min min=[ ]t t + +− 
μ

μ μ                (28d) 

where  is the step size. Obviously, (27) and (28) are 

explicable only in the sense of mathematics. Next, we intend to 

excavate the specific meanings of (27) and (28), which makes 

the above-distributed algorithm applicable in P2P electricity 

market clearing. At first, we define the LMP for the active and 

reactive power [33], [34] as follows: 

( )

( )

( ) ( ) P ( ) Q ( ) V ( ) V

P P max P min P

( ) ( ) P ( ) Q ( ) V ( ) V

Q Q max Q min Q

1

1

t t t t t

p p q

t t t t t

q p q

  

  

 =  − +  −  + 


=  +  − −  + 

D D μ D μ D

D D μ D μ D

 (29) 

Then, (27) can be seen as the prosumer n locally solving the 

following problem as (29) with the objective function of 

maximizing its total revenue (i.e., utility function minus the cost 

of purchasing active and reactive power). 
( ) ( ) ( 1) ( 1)

, ,
,

{ , }: argmin ( , )
n n

t t t t

n n n n n p n n q n n
p q

p q U p q p q − −



= − + +  (30) 

The prosumer n solves its problem and then submits the bid 

or offer of active and reactive power to the market operator. 

According to the received bids and offers from prosumers, the 

market operator calculates the LMPs, as shown in (28) and (29), 

and broadcasts them to prosumers in the P2P energy trading 

market as the iteration continues.  

V.  GENERALIZED FAST DUAL ASCENT METHODOLOGIES  

The traditional LR-DM needs to tune the step size for better 

convergence performance. Sometimes it may even suffer from 

poor convergence if the dual is ill-conditioned. Here, we use the 

fast dual ascent method to improve and accelerate the 

convergence performance. For ease of the presentation 

hereafter, the optimization model (25) is compactly formulated 

as (31). 
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2 2

V V

P Q max min

P P

P Q

Q Q

P Q

1 1
min ( , ) :

2 2

+ ,

1 0

1 0

r r

N p

N q

f








= − + −


  

 − + =

 + − =

P QH Hp,q
p q p p q q

V D p D q V μ μ

p D p D q

q D p D q

      (31) 

where matrices Hp, HQ, pr and qr are extracted from the utility 

and cost function as shown in (1) and (2). 

A.  Fast Dual Ascent Method 

First-order optimality conditions for (27) using p and q 

respectively are { } 0 =
p,q . Hence, the dual function can be 

described as (32). 

1 11
( ) : inf ( )

2

T T Td − −= = − − +
p,q

δ δ ΜH Μ δ ΜH g z δ      (32) 

where 

max

min
:

p

q





 
 
 =
 
 
  

μ

μ
δ       

VV
QP

VV
QP

P P

P Q

Q Q
P Q

1

1

N

N

 
 

− −
=  

− 
 

− 

DD

DD
Μ

D D

D D

   :
0

0

 
 
−
 =
 
 
 

v

v
z  

 
=  
 

P

Q

H
H

H
                        

r

r

− 
=  

− 

p
φ H

q
 

Then, the dual problem can be stated as 

max min, 0, ,
max ( )

p q

d
 μ μ

δ                             (33) 

Provided that problem (30) is convex with a convex objective 

function and convex constraints, the dual function d is 

differentiable, and its gradient can be represented as 
*

*

( )
( )= -

( )
d

 
  

  

p δ
δ Μ z

q δ
                         (34) 

where  * *( ), ( ) arg min=
p,q

p δ q δ .  

By (34), for any 
(1)
δ and 

(2)−δ , we get 
(1) (2) 1 (1) (2)

2 2 2
- ( ) ( ) Td d − +  −δ δ ΜH Μ δ δ     (35) 

which implies -d has a Lipschitz continuous gradient with 

constant 1

2
= TL −
ΜH Μ . Hence, it motivates us to use the fast 

gradient method to solve the dual problem instead of using a 

sub-gradient method. The basic idea of the fast gradient method 

is to maximize the bound in each update instead of directly 

maximizing d. Hence, the definition of the Lipschitz constant 

can be generalized to fit a tighter bound with different 

curvatures in different directions, thus guaranteeing a closer 

approximation and a faster convergence. Generalize the 

Lipschitz constant 1

2

T−
ΜH Μ to 1 T−

ΜH Μ , then for any 
(1)
δ

and 
(2)−δ , it attains 

2
(1) (2) (2) T (1) (2) (1) (2)1

( ) ( )+ ( ) ( )
2

d d d  − − −
L

δ δ δ δ δ δ δ (36) 

where 1 T−
L ΜH Μ . Obviously, the L-norm term in the right 

hand of (35) brings a lower bound with which the fast gradient 

method is used to solve the problem (33), which is referred to 

as Gf-DA. The updating rule of Gf-DA is presented in 

Algorithm 1. 

Algorithm 1: Generalized fast dual ascent  

Initialization: Set (1) (1) 0p q = = , max min(0) (0) 0= μ μ  

and (1) 1 = . 

For 1t  , update the primal and dual variables by the 

following steps:  

S1: For prosumer n, receive the LMP information and solve 

the following problem minimizing its total cost: 
( ) ( ) ( 1) ( 1)

, ,
,

{ , }: argmin ( , )
n n

t t t t

n n n n n p n n q n n
p q

p q U p q p q − −



= − + +  

Then, the market operator updates the multipliers and 

calculates the LMP 

S2: 

min max

min min

( ) ( ) 1 ( )

max max
0

( ) ( ) 1 ( )

min min
0

( ) ( ) 1 ( )

( ) ( ) 1 ( )

[ ] ( )

[ ] ( )

[ ] ( )

[ ] ( )

p p

q q

t t t

t t t

t t t

p p

t t t

q q

d

d

d

d

 

 

 

 


−


−

−

−

  = +  


 = +   

 = + 

 = + 


β μ

β μ

μ β L γ

μ β L γ

L γ

L γ

 

S3: 
( )2

( 1) 1 1 4

2

t
t 

 + + +
= and 

( )
( )

( )

1t
t

t






−
=  

S4: 

( 1) ( ) ( ) ( ) ( 1)

max max max max

( 1) ( ) ( ) ( ) ( 1)

min min min min

( 1) ( ) ( ) ( ) ( 1)

( 1) ( ) ( ) ( ) ( )

+ ( )

+ ( )

+ ( )

+ ( )

t t t t t

t t t t t

t t t t t

p p p p

t t t t t

q q q q





    

    

+ −

+ −

+ −

+

 = −


= −


= −


= −

β μ μ μ

β μ μ μ
 

S5： Calculate the LMP as stated in (29). 

where  
b

a
• denotes the projection operation onto the set [a, 

b]; 
max

1[ ]−

μ
L ,

min

1[ ]−

μ
L ,

1[ ]
p

−
L and 

1[ ]
q

−
L are the submatrices 

of L-1 consisting of the rows with respect to the dual 

variables denoted by the subscript.  

B.  Convergence Analysis  

First, we will discuss the prerequisite which guarantees the 

convergence of LR-DM and the Df-GA for solving the 

proposed model. To ensure the convergence of LR-DM, the 

step size   in (28) should be sufficiently small such that 

0 2 / L   where L is the Lipschitz constant in (35) and 
1

2

TL −= ΜH Μ . It can be proved by using the descent lemma 

and readers can refer to [27] for more details. As for the 

generalized fast dual ascent, we can set 
1 T−

L ΜH Μ  so that 

a quadratic upper bound of the dual function is obtained and 

thus guarantee the convergence when solving the dual problem. 

Next, the convergence rates of the LR-DM and Gf-DA will 

be compared. Denote the optimum of primal and dual problems 

as { , } 
p q and 


δ , respectively. The initial gaps are defined as  

2
(0)

2 2
C = −δ δ  and 

2
(0)C = −L L
δ δ             (37) 

Then, we get the following lemma: 

Lemma-1: Suppose that both the step size   in the LR-DM and 

matrix L in the Gf-DA are set appropriately to guarantee the 

convergence, it yields: 
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( ) 2( ) ( )
2

t C
d d

t

 − δ δ  and ( )

2

2
( ) ( )

( 1)

t C
d d

t

 − 
+

Lδ δ (38) 

Proof: The first part can be easily proved by the descent lemma 

(see [27] for details). The second part can be seen in the 

appendix. 

From Lemma 1, it can be concluded that Gf-DA solves the 

problem with a convergence rate no worse than 
2(1/ )O t  

whereas the LR-DM only achieves a rate of (1 / )O t . It shows 

that the proposed method could significantly improve the 

convergence of LR-DM for the organization of an event-driven 

P2P energy trading market. 

C.  How to Choose L? 

Picking a proper step size is critical and difficult in the LR-

DM while it is unnecessary to empirically tune the step size in 

Gf-DA since the dual multipliers can be updated in different 

directions represented by the matrix L. Therefore, the main task 

in the implementation is how to determine the matrix L. 

According to (34), 1 T−=L ΜH Μ  provides the tightest bound 

which thus offers the fastest convergence. However, M is 

obviously not a row full rank matrix, which makes L not 

invertible. To deal with the dilemma, we first assume L is a 

diagonal matrix, though it may slow the convergence to a 

certain degree. Then, L can be obtained by solving a semi-

definite programming problem as follows: 

 
1

min Trace( )

T−





L
L

L ΜH Μ

                          (39) 

There is another concern that should be addressed, i.e., how 

to get the H matrix. The matrix H consists of the economic 

parameters of the prosumers, to which the neutral market 

operator or coordinator has no access due to privacy concerns 

and market fairness. Two cases are considered here, one with a 

market operator who can estimate the values in the H matrix 

using the information in the bids/offers in the successive two 

iterations [31], the other with no market operator or coordinator, 

whose matrix L is computed in a distributed way based on the 

distributed version of the generalized Lipschitz condition [30].  

Upstream 

power 

system

Substation

1 2 3 4 5 6 7 8 9 10 1112 13 14 15 16 17 18

23
2425

26 27 28 29 30 31 32 33

19 20 21 22

2P

1C

2C

1P

3P  
Fig. 2. IEEE 33-bus distribution network with five prosumers 

VI.  CASE STUDIES 

All numerical experiments are conducted in MATLAB 

R2014a on a laptop with an Intel Core (i7, 2.80GHz) and 16GB 

memory.  

A.  System Setting 

In this paper, a modified 33-bus test system is employed to 

demonstrate and analyze the proposed local P2P power 

trading market, as shown in Fig. 2. Suppose 5 prosumers are 

participating in the market, located at nodes 2, 17, 19, 23, 33. 

Among them, prosumers at nodes 17 and 33 are consumers 

(denoted as C1 and C2), whereas those at the rest three nodes 

are producers (denoted as P1, P2, and P3, successively). It 

should be noted that all distribution network nodes have the 

basic load, adopting the same value as those in the original test 

system. The step size   and the initial value in the Lagrange 

multiplier in LR-DM are set to 0.001 and 0, respectively. The 

lower and upper limits of nodal voltage magnitude are set as 

0.91 and 1.09, respectively. In addition, the L-∞ norm is used 

to define the stopping criterion for checking convergence. 

Denote the vector   as the LMPs for active and reactive 

power, then 

( ) ( 1) 410t t− −


 −                             (40) 

Eqn. (40) means that the iteration process continues until the 

largest deviation of LMPs in the two successive iterations is 

smaller than 10-4.  

The utility function, cost function coefficient, and upper and 

lower limits of output constraints of community operators are 

taken from the ref. [14]. Referring to [32], assume the 

coefficients of reactive power cost function as 1/10 of those of 

active power cost function, as shown in Table II. 
TABLE II 

THE BASIC PARAMETERS OF PROSUMERS 

Cons

umer 

p

i  

($/kWh2) 

p

i  

($/kWh) 

q

i  

($/kVarh2) 
ip  

(kW) 

ip  

(kW) 

iq  

(kVar) 

iq  

(kVar) 

C1 0.0080 0.625 0.0008 20 0 10 -10 

C2 0.0090 0.590 0.0009 25 0 15 -15 

Produ

cer 

p

ja  

($/kWh2) 

p

jb  

($/kWh) 

q

i  

($/kVarh2) 
jp  

(kW) 

jp  

(kW) 

jq  

(kVar) 

jq  

(kVar) 

P1 0.0040 0.205 0.0008 30 0 30 -30 

P2 0.0030 0.330 0.0006 20 0 20 -20 

P3 0.0035 0.330 0.0007 20 0 20 -20 

B.  Sensitivity Analysis 

In this section, the sensitivity and error of voltage and 

network loss are analyzed [32]. Five nodes are first selected 

arbitrarily in the test system (nodes 5, 6, 15, 16, and 28 in this 

case), and then a certain amount of active power and reactive 

power are injected into the selected nodes. The injected power 

to each node follows the normal distribution, as shown in (41). 

~ (0 0.15 )i iN ，                      (41) 

where i  is the active or reactive power injected into node i 

and i  is the baseload power of node i. 

The Newton-Raphson method and the sensitivity model 

presented in this paper are used to calculate the voltage 

amplitude of each node and network loss in the distribution 

network, respectively. The results from the Newton-Raphson 

method are calculated with the Matpower 7.0 and are taken as 

the benchmark. It can be found from Table III that the error of 

voltage amplitude and network loss obtained by the sensitivity 

method proposed in this paper are controlled within 1 ‰ and 

3%, both of which have high accuracy. 
TABLE III 

ERROR ANALYSIS OF VOLTAGE AND LOSS SENSITIVITY MODEL 
No. 1 2 3 4 5 

maximum error of nodal 

voltage magnitude (%) 
0.07  0.08 0.06 0.07 0.07 

error of network loss (%) 0.29  2.96 0.08 1.88 2.33 

C.  Performance Analysis 

To analyze the impact of the P2P power trading market on 

the operations of the distribution network, the following three 

modes are set up for comparative analysis: 
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Mode 1: A P2P electricity trading market without considering 

voltage constraints. 

Mode 2: A P2P electricity trading market without considering 

network loss. 

Mode 3: A P2P electricity trading market considering both 

voltage constraints and network loss as proposed in this paper. 

It can be observed that without considering voltage 

constraints, i.e., mode 1, the nodal voltage amplitude of the end 

node, i.e., node 18 in the test system, drops to 0.9090 during 

P2P power trading, which obviously violates the lower limit. In 

mode 3, the injected reactive power in C1 and C2 increases 

compared to mode 1, effectively reducing the voltage drop of 

the feeder and thereby avoiding violating voltage constraints. 

When the network loss is not considered (mode 2), the trading 

power of each market agent fluctuates slightly.  
TABLE IV 

OPERATIONAL DATA IN MODES 1, 2 AND 3  

Mode Injected power  P1 P2 P3 C1 C2 
voltage at node 

18 

1 
Active(kW) 23 9.8 10 -22.8 -17.2 

0.908 
Reactive(kVar) -9.4  -12.3 -1.2 15 10 

2 
Active(kW) 20.6 6.6 6.7 -12.8 -21.1 

0.910 
Reactive(kVar) -8.7 -11.5 -4.8 15 10 

3 
Active(kW) 20.2 6.2 7.3 -14.1 -17.9 

0.910 
Reactive(kVar) -10.4 -13.6 0.3 15 10 

Note: Define the injection power as the positive value 

 

TABLE V  
LOCATIONAL MARGINAL PRICE IN MODES 2 AND 3 

Electricity price P1 P2 P3 C1 C2 

Mode 

2 

Active($/kWh) 0.3697 0.3697 0.3766 0.5229 0.4002 

Reactive($/kVarh) -0.0069 -0.0069 -0.0034 0.1205 0.0136 

Mode 

3 

Active ($/kWh) 0.3667 0.3669 0.3812 0.5122 0.4292 

Reactive ($/kVarh) -0.0083 -0.0082 -0.0002 0.1001 0.0403 

Note: The electricity prices in the above are selling prices. 

 
Fig.3 The iteration process of selected nodes (i.e., nodes 2, 19, and 33) in 

mode3 using the Gf-DA method 

It can be found in Table V that the price of active power 

nearly remains constant for each prosumer in mode 2. This is 

because the LMP mechanism partly degenerated into the 

uniform pricing mechanism when the network loss is neglected. 

The LMP mechanism for the reactive power still works as the 

voltage drops at the end node can be mitigated by dispatching 

the reactive power of each prosumer at a relatively low cost.  

As shown in Table V, the LMP information could effectively 

present the scarcity of the active and reactive power for each 

node in mode 3. Note that prices for the reactive power at 

different nodes are positive or negative values. For example, the 

reactive power price for P1 is negative, indicating that excess 

reactive power needs to be absorbed in the corresponding node. 

Combining with Table IV, we can get that each prosumer 

obtains a positive benefit by generating or absorbing reactive 

power. This is reasonable because it will bring the certain cost 

to be recovered regardless of generating or absorbing reactive 

power for the prosumers, which is also consistent with the 

modeling of reactive power cost in (1) and (2). It also can be 

obtained that the LMP approach penalizes users who contribute 

to distribution bottlenecks and rewards users who tend to 

alleviate them. In addition, the merchandise surplus brought by 

the network loss and voltage constraints guarantees the revenue 

adequacy in the proposed P2P energy market, which can also 

be verified by Tables IV and V. 

The iteration process of the trading active and reactive power 

of selected market agents in mode 3 is shown in Fig. 3 while 

the iteration process of λq is depicted in Fig. 4. As shown in Fig. 

3, each market agent could reach convergence in 51 iterations, 

which makes the proposed Df-GA applicable in the short-term 

P2P energy trading market proposed in this paper. 

  
(a)                                                (b) 

Fig.4 Iteration process of λq: (a) LR-DM; (b) Gf-DA. 

 
Fig.4 The iteration process of selected nodes in the 69-bus and 136-bus test 

systems 

D.  Comparison Between LR-DM and Gf-DA 

It can be found in Fig. 4 that Gf-DA can converge in 51 

iterations while the LR-DM could not converge even in 200 

iterations. This is mainly because the constraint of voltage 

magnitude limit on node 18 is binding in mode 3 so that the LR-

DM could not find a feasible solution and even oscillate around 

the optimum. In addition, the Gf-DA method converges to the 

optimum values monotonically in the first 10 iterations while 
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the LR-DM arouses zigzagging and abrupt changes. It is 

reasonable because the Gf-DA updates the multipliers in 

different directions while the sub-gradient method mainly 

focuses on improving performance per iteration. Note that there 

respectively exist closed-form solutions to the primal and dual 

problems in Gf-GA, which enables it to avoid solving the 

optimization problem in each update. Thus, the solution time 

for Gf-DA is merely 0.1862s which is too short to be neglected 

in a P2P market cycle.  

E.  Scalability Analysis 

Two test systems, i.e., the 69-bus with 28 prosumers and the 

136-bus with 52 prosumers, are used to demonstrate the 

scalability of the proposed technique. The nodes associated 

with the prosumers are shown in Table VI and the remaining 

parameters for the prosumers are the same as those in Table II. 

Besides, the step-size scheme in mode 3 is still used in this 

study. The results of this study are provided in Table VI and 

Fig.4 is employed to depict the iteration process of the trading 

active and reactive power of selected market agents. As is 

shown in Table VI and Fig.4, Gf-DA can achieve convergence 

at a relatively high speed regardless of the scale of the test 

system or the number of prosumers. This is reasonable because 

the time required to implement the five steps in Gf-DA is 

negligibly short since a closed solution can be derived in the S2 

and simple algebraic operations are conducted in S3, S4, and 

S5. Besides, the iteration number for LR-DM with respect to 

the two test systems is much higher than those of Gf-DA and so 

does the computation time. Hence the proposed method enjoys 

a better convergence performance. 
TABLE VI  

COMPARISONS OF SCALABILITY PERFORMANCE FOR GF-DA AND LR-DM 

Systems Prosumers 
Gf-DA LR-DM 

Iteration  Time/s Iteration Time/s 

69-bus 

with 28 
prosumers 

Producers: {2 9 12 15 22 24 32 36 

40 41 57 59 66 67}; 
47 0.762 809 31.69 

Consumers: {5 8 16 18 25 27 35 39 
43 47 50 52 61 64}; 

136-bus 

with 52 

prosumers 

Producers: {2 5 11 12 22 26 31 33 

42 45 51 53 62 65 74 77 81 85 91 

101 117 132}; 
35 1.319 1731 154.0 

Consumers: {3 8 17 19 23 26 38 47 

49 54 56 62 68 73 79 86 88 96 98 

106 109 115 116 125 128 131 133}; 

F.  Robust Performance Analysis 

The packet dropout during the information exchange is 

unpredictable, which can be modeled as a stochastic process 

known as burst noise [35]. Besides, the communication delay 

can also be modeled as a probability model, which determines 

the data packet delivery rate[36]. Here, we take the packet 

dropout as an example to study the robustness of the proposed 

solution method. A Gilbert-Elliott model is invoked to model 

the packet dropout process. Two states, i.e., the good (G) and 

the bad (B) are considered in this model, each of which may 

generate errors as independent events with the state-dependent 

error rates, 1- 1 (good) and 1- 2  (bad), respectively. The 

transition probabilities between the states are defined by, 1 : 

G-state to B-state, 2 : B-state to G-state. The stationary state 

probabilities G  and B  exist for 1 20 , 1   , which can be 

respectively stated as 

 G 2 1 2/ ( )   = +  and B 1 1 2/ ( )   = +         (42) 

Thereby, the error rate E  of the transmission channel can 

be obtained in the stationary state as:  

E 1 G 2 B(1 ) (1 )    = − + −                      (43) 

The values of 1 0.00253 =  and 2 0.25 =  are used for all 

cases [37]. As mentioned in [35], the value of ω2 is selected 

around 0.5, and ω1 can be calculated to attain the desired 

dropout rate. Thus, the values of ω2=0.5 along with ω1=0.995, 

0.955 0.904 and 0.80 are chosen for the packet dropout rate E

1%, 5%, 10% and 20%, respectively.  

Here it is assumed that the dropout rates of both market 

operator and peers are set as the values of E . Specifically, if 

the market operator does not receive information from the peers 

and vice versa, they simply use the information in the previous 

iteration as the interaction process continues. As shown in 

Table VII, the solution method can converge to the optimum 

when facing the random packet dropout and more iterations will 

be demanded with a higher probability of communication 

failure. Compared with the perfect communication mode, i.e., 

E 0 = , the iteration number does not change remarkably 

regardless of IEEE 33-bus, 69-bus, or 136-bus test systems 

when the packet dropout rate is smaller than 0.1. Even when the 

dropout rate is 0.2 which is rare in the practical scenarios, the 

solution method still could converge in a permissible number 

of the iteration. It shows our method enjoys a good robustness 

performance when the packet dropouts occur. 
TABLE VII 

ROBUST PERFORMANCE FOR THE THREE TEST SYSTEMS 

Probability/ E  
Number of Iterations 

IEEE 33-bus Case 69-bus Case136-bus 

0 51 47 35 

0.01 62 49 42 

0.05 71 65 53 

0.1 85 72 121 

0.2 122 109 167 

 

VII.  CONCLUSION  

An event-driven P2P electricity trading market considering 

network constraints is proposed to support the short-term or 

immediate local energy transactions in a distribution network. 

First, the event-driven P2P market framework is briefly 

outlined in three aspects: market agents, market operation rules, 

and event-driven rules. Then, the impacts of P2P transactions 

on the distribution network are quantified by the sensitivity 

analysis of voltage and loss and network constraints are further 

included in the market clearing problem. Hence, the 

endogenous cost of P2P energy trading can be reflected by the 

LMP as the externality of operational constraints is internalized 

in the market clearing process. Moreover, the market is cleared 

using a generalized fast dual ascent method based on which a 

negotiation mechanism between the participants and market 

operator is designed with preserving agents’ privacy. The 

numerical results show the proposed market framework could 

effectively address the P2P energy transactions without 

violating the operational constraints of the distribution network, 

and the employed distributed solution method enjoys good 

convergence and scalability properties in the three test systems. 
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APPENDIX 

A.  Proof of Lemma-1 

For ease of description, the problem (31) can be equivalently 

transformed into a general formulation with equality constraints 

by introducing the auxiliary variables, i.e., 1z  and 2z : 

2 2

V V

P Q 1 1 max

V V

P Q 2 2 min

P P

P Q

Q Q

P Q

1 1
min ( , ) :

2 2

+ ( )

- ( ) ,

1 0

1 0

r r

N p

N q

f

diag

diag








= − + −


+ =


− + =


− + =


+ − =


P QH Hp,q
p q p p q q

D p D q z z V μ

D p D q z z V μ

p D p D q

q D p D q

      (A1) 

Then, the dual function can be written as 

1 2, ,
( ) : inf ( ) ( )d  = = −

p,q z z
δ δ δ              (A2) 

where 
1 2

max 1 1 min 2 2
,

( ) min( * ( ) * ( ) )T Tdiag diag = +
z z

δ μ z z μ z z . 

Define max min: [ , ]=μ μ μ . Then, we have
2*

1( ) ( )Ai N

i i i  =

==δ  

and  

0 0
( )

i

i i
otherwise


 


= 

+
                  (A3) 

For ease of the follow-up description, we further assumed 

that the function ( )i i  is a continuous convex function, as 

shown in fig.5. It is supposed that the values of derivative of 

( )i i   are sufficiently small when 0i   so that the strong 

duality of ( ) δ  is guaranteed.  

( )i i 

i
 

Fig.5 Diagram of the function ( )i i   

 

Define 
T

T T

max min: p q  =  γ β β  and the following 

quadratic approximation of the dual function ( ) δ  obtains. 

21
( ) ( )- ( ), ( )

2
d d = −  − + − +， ：L L

δ γ γ γ δ γ δ γ δ  (A4) 

Define 

( ) arg min( ) =： L
δ

δ γ                    (A5) 

Then, the following corollary can be obtained. 

(Corollary 1) Assuming that 
1 T−

L ΜH Μ then for any δ , 

we have 

21
( ) ( ) , ( )

2
  − +  − + − −

L
δ δ δ γ γ δ L δ γ     (A6) 

Proof. From (33), we have 

( ) ( )−  ，
L

δ δ γ                          (A7) 

Thus, it yields, 

( ) ( ) ( ) ( ) − +  − − ,
L

δ δ δ δ γ           (A8) 

Since the functions -d and ( ) δ  are both convex, it gets 

( ) ( ) , ( )d d d−  − + − −δ γ δ γ γ               (A9) 

( ) ( ) , ( )     + − δ δ δ δ δ               (A10) 

Substituting (A9) and (A10) into (A8) yields 

( ) ( ) ( ) , ( ) ( )

                            , ( ) ( )

d d 

 

 − +  − + − − +

  + −  − ，
L

δ δ γ δ γ γ δ

δ δ δ δ γ
 

2

                     , ( ) , ( ) +       

1
                            ( ),

2

d

d

 = − − + − 

  − − −
L

δ γ γ δ δ δ

γ δ γ δ γ
 

21
                     , ( ) ( )

2
d   = − − + − −

L
δ δ γ δ δ γ  

21
                     , ( )

2
  = − − − −

L
δ δ L δ γ δ γ  

21
, ( )

2
 = − + − −

L
δ γ γ δ L δ γ                (A11) 

where in the second equality above we used the first-order 

optimality conditions of (A5). The proof is completed. 

As shown in the update rule S2 of algorithm 1, 

( ) arg min ( ( ))t t=： ，L
δ

δ δ γ . Then, we apply the Corollary 1 at 

the points { ( )t=δ δ , ( 1)t= +γ γ }, it yields, 

2
( ) ( 1) ( 1) ( 1)1

( ) ( )
2

t t t t+ + +− +  −
L

δ δ δ γ  

( 1) ( ) ( 1) ( 1), ( )t t t t+ + ++ − −γ δ L δ γ  (A12) 

Likewise, at the points {
*=δ δ , ( 1)t+=γ γ }, we have 

2
* ( 1) ( 1) ( 1)1

( ) ( )
2

t t t+ + +− +  −
L

δ δ δ γ  

( 1) * ( 1) ( 1), ( )t t t+ + ++ − −γ δ L δ γ  (A13) 

The dual function at the tth iteration and the optimum are 

respectively abbreviated as ( )t and *  hereafter except 

noted. Multiply the inequality (A12) by 
( 1)( 1)t + −  and then 

add it to the inequality (A13), it yields 
( 1) ( ) * ( 1) ( 1) *

( 1)
2

( 1) ( 1)

( 1)( ) ( )

2

t t t t

t
t t

 



+ + +

+
+ +

− − + − − +

 − +
L

δ γ
 

( 1) ( 1) ( 1) ( ) * ( 1) ( 1)( 1) , ( )t t t t t t + + + + +− − − −γ δ δ L δ γ (A13) 

Multiplying the inequality (A13) by 
( 1)t +

and using the 

update rule in S3, we obtain 
2( ) ( ) * 2( 1) ( 1) *

2
( 1) ( 1) ( 1)

( 1) ( 1) ( 1) ( 1) ( ) * ( 1) ( 1)

2( )( ) 2 ( )

( )

      2 ( 1) , ( )

t t t t

t t t

t t t t t t t

 



  

+ +

+ + +

+ + + + + +

− + − − +

 − +

− − − −

L
δ γ

γ δ δ L δ γ

 

2
( 1) ( 1) ( 1) ( ) *

2
( 1) ( 1) ( 1) ( ) *

( 1)

             ( 1)

t t t t

t t t t

 

 

+ + +

+ + +

= − − − −

− − −

L

L

δ δ δ

γ δ δ

 

2
( 1) ( 1) ( 1) ( ) *( 1)t t t t + + += − − − −

L
δ δ δ  

2
( ) ( ) ( ) ( 1) *( ( 1)t t t t  −− − −

L
δ δ δ                (A14) 

where in the first equality the Pythagoras relation is used and in 

the second equality the update rule in S4 is applied.  
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Summing over iterations, it yields 
2( ) ( ) * 2(1) (1) *

2 2
( ) ( ) ( ) ( 1) * (1) (1) (1) (0) *

2 ( ) 2( )( )

( 1) ( ( 1)

t t

t t t t

 

   −

− +  − + −

− − − − − − −
L L

δ δ δ δ δ δ
 

2
2(1) (1) * (1) (1) (1) (0) *2( )( ) ( ( 1)   − + + − − −

L
δ δ δ  (A15) 

The sequence {
( )t } generated in S4 with 

(1) 1 =  satisfies 
( ) ( 1) / 2t t  +  for all 1t  . Thus, we have  

( ) *

2
2(1) (1) * (1) (1) (1) (0) *

2

2
  [2( )( ) ( ( 1) ]

( 1)

t

t
  

− + 

− + + − − −
+ L

δ δ δ
 

2 2
* (1) (1) (1) (1) * (1) (1)

2

2
[2 , ( ) ( ]

( 1)t
 − − + − − −

+ L L
δ γ L δ γ δ δ δ γ  

2
* (1)

2

2

( 1)t

−
=

+

L
δ γ

                                                                  (A16) 

where Corollary 1 is applied at the points ( * (1): , := =δ δ γ γ ) in 

the second inequality. Define (1) (0)=γ δ , the desired result 

follows. 
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