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ARTICLE INFO ABSTRACT

With the implementation of smart distribution technology, the real-time pricing scheme has emerged as a critical
subject for energy management systems. In this paper, we propose a bilevel optimization model that computes a
transactive price signal representing the impact of wholesale market locational marginal prices on retail cus-
tomers’ demand response participation. At the upper level of the proposed model, the electricity utility company
(EUC) determines the optimal energy procurement and transactive price signals for demand response aggregator
(DRA). At the lower level, each DRA adjusts its electricity consumption profile using the transactive price signals.
The adjusted DRA consumption profile is fed back to the upper level problem as the iteration continues. The
interactions among DRAs are simulated as a non-cooperative game. The proposed model is transformed into a
mixed-integer quadratically constrained programming through using the Karush-Kuhn-Tucker (KKT) conditions.
The generalized disjunctive programming is introduced when linearizing the bilinear terms in KKT conditions by
applying piecewise McCormick relaxation and big-M disjunctive constraints. The numerical results demonstrate
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the effectiveness of our model and the proposed solution method.

1. Introduction

The earlier demand response (DR) programs focused mostly on large
consumers [1]. However, the deployment of smart grid and controllable
domestic loads allow retail households to participate in DR programs
[2]. Several studies analyzed the price-based DR in residential sector
through the aggregation of controllable loads which were managed by a
DRA [3]. These studies maximized the social welfare through the co-
ordination of energy providers’ generation and consumers’ electricity
demand using day-ahead or real-time pricing. In [4], authors proposed
a bilevel model to determine the optimal pricing scheme for DR. In
addition, DRAs were simulated as price takers, which reacted to market
prices independently in order to reach a competitive equilibrium. Note
that the inherent problem in such formulations was the load synchro-
nization when a substantial part of the load was shifted from peak to
off-peak hours without reducing peak-to-average ratio significantly [5].

The three-level electricity market hierarchical structure [4], de-
picted in Fig. 1, is studied in our work. Specifically, we assume the
electric utility company (EUC) plays a role of the intermediary agent
that bridges the connection between the wholesale market and
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distribution system aggregators/loads [7]. On the one hand, the EUC
determines the optimal bidding strategy based on forecasted electricity
prices in a day-ahead wholesale market and energy procurement from
variable RESs; on the other hand, the EUC clears the distribution level
market by facilitating optimal demand response among end-users. Note
that the EUC here not only operates the distribution network, but also
plays a dual role of being a retailer with the responsibility of the par-
ticipation in the wholesale electricity market and readers can refer to
[6] and papers therein for more details. As shown in Fig. 1, state-of-the-
art distribution management techniques, such as advanced metering
infrastructure, facilitate the control of EUC and monitoring of the dis-
tribution system. Since a residential consumer has only a few con-
trollable appliances, it is necessary to aggregate the demand response
resources from a large number of residential consumers to achieve a
sensible benefit to the EUC and consumers. Demands from a hetero-
geneous population of appliances are aggregated and then dispatched
by a DRA. The bidirectional communication between the DRA and the
affiliated residents is established using a device referred to as demand
controller at the DRA side and using a smart meter at the consumer side
[3]. Specifically, the smart meter in each house submits the power
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Peh/Pdh Maximal charging/discharging rate of ESS
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Nomenclature PPE /P::" Maximum/minimum power consumption of DRA d power
" at time ¢
A. Acronyms S; Complex power injection atbusi, S = P + jQ =[Sy, ...Sy].
So Complex power injection at the slack bus, Sy = Py + jQq
DER Distributed energy resources Vo /Io  Voltage/current injection at the slack bus
DR Demand response v /v_ Upper/lower limit on bus voltage magnitude at bus i
-1
DRA Demand response aggregator V; Voltage phasor at bus i, V = [, ...,Vy]
ESS Energy ‘storage. system AV Voltage perturbation vector
EUC Electricity utility company Y The admittance matrix
GDP Generalized disjunctive programming a Market price forecast in time ¢
KKT Karush-Kuhn-Tucker A4, Deviation of market price from the forecast value at time t
MIQCP Mixed-integer quadratically constrained programming v Retail price for regular load at time t
MPEC Mathematical programming with equilibrium constraints ¥R Renewable energy price at time ¢
RES Renewable energy source n/ndh  Charging/discharging efficiency of the ESS
. ¢ Capacity of the inverter
B. Sets and Indices 8 Step size of the price signal
D Set of indices of DR, D: ={1, ....d, ...,.D} D. Variables
N Set of buses, N: ={0, 1, ...,n, ....N}
T Set of %nd%ces of time slots, T: =1, ...t, ..., T} PR Scheduled load for DRA d at time ¢, PP = [P/}, ...P)f]
Q Set of %nd}ces of load ) P’ Power procured from the wholesale market at time ¢
Qgpg Set of indices of renewable generation sources PRESIQRES  Scheduled active/reactive power of RES at bus i at time ¢
k Index of segments in the piece-wise linear utility function PP Charging/discharging power for ESS at time ¢
SOC; State of charge of the ESS at time ¢
C. Parameters U, Utility for DRA d at time ¢
. y{m Retail price for DRA at time t
By Ca.pz.amty of the ESS(MWh). . A Uncertain electricity price at the market
EPR Minimal energy consumption of DRA d during the sche- 8 Price signal at time ¢
duling horizon. L . o Lagrangian multipliers
I; Phasor of the current injection at bus i, I = [, ...Iy] F; Binary variables
. P L _ L
li,fm‘ Regular load at bus i at time t, Py, = 2.\ P P Integer variables for the step of the price signal
P Available RES power at bus i in time t
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Fig. 1. The conceptual design of the proposed system model.
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Fig. 2. The proposed bilevel model for transactive pricing.

consumption information, e.g., upper/lower limits of the load power,
minimal energy consumption, consumption durations, to the DRA. The
DRA is responsible for optimizing the scheduling strategies considering
the power consumption information and the price signal published by
EUC.

In this paper, we focus our discussion on priced-based DR initiative
in order to address the optimal pricing scheme at the retail level. We
apply a leader-follower game method in which the hierarchical opti-
mization problem between the EUC and DRAs is modeled as a
Stackelberg game with the EUC as the leader (upper problem) and
DRAs as followers (lower problems). The proposed model is a bilevel
optimization, which represents a special case of mathematical pro-
gramming with equilibrium constraints (MPEC) [8]. The MPEC model
was used in power systems for developing DR dynamic pricing in a
distribution network [7], optimal bidding strategy in day-ahead elec-
tricity markets [9], optimal pricing strategy in pool-based electricity
markets [10], modeling coordinated cyber-physical attacks [11], and
optimal charging schedules of plug-in electric vehicles [12].

The MPEC model is conventionally solved by satisfying the KKT
conditions or the duality theory [13]. When the Nash equilibrium exists
and is unique, the KKT conditions are sufficient and necessary for the
optimality of the lower level problem in our model [14]. However, the
nonconvexity will result from nonlinear complementarity constraints
which could be linearized into Big-M disjunctive constraint through the
Fortuny-Amat transformations method [4,7]. Inevitably, a significant
number of integer variables were introduced, which resulted in a mix-
integer nonconvex model. Besides, the nonlinear complementarity
terms were also addressed through semidefinite programming relaxa-
tion (SDPR) and reformulation-linearization technique (RLT) [15]. It
should be noted that the two methods might incur a large duality gap
and a heavy computation time in nonconvex cases. Since the com-
plementarity constraints in KKT conditions comprise many bilinear
terms, the piecewise McCormick relaxation [16] was employed to ap-
proximate the bilinear terms whereby the model was transformed into a
generalized disjunctive programming (GDP) problem with Boolean
variables. As the GDP problem could not be solved directly, the convex
hull of the disjunctions was introduced [17] to transform the model into
a MIQCP problem.

The transactive energy is commonly referred to as a system of
economic and control mechanisms that allows the dynamic balance of
supply and demand using value as a key operational parameter [18]. A
TE framework thus offers a platform for generation and consumption
units to automatically negotiate their actions with each other using
advanced energy resource management and market algorithms. The
existing publications show that the concepts of transactive energy and
transactive control are usually applied to subjects like the dispatch of
thermostatically controlled loads (e.g. heating, ventilation, and air-
conditioning system in commercial buildings) [19], integration of RES
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into distribution networks [20], and optimal energy management in
multi microgrids [21]. In the applications of TE and TC, mechanism
design is often one of the most important design factors to ensure their
successfulness. Such mechanisms usually aim to set a price signal with
incomplete information of players in a market environment so as to
induce players to individually make decisions that is optimal to not only
themselves but also to global goal maximization (e.g. social welfare).
For example, the authors of [22] employ mechanism design to imple-
ment the transactive energy management in a local energy market. In
addition to mechanism design, the game theory is also widely employed
in the framework of TE and TC, which could specifically model strategic
interactions among rational decision-makers. The non-cooperative
games were widely applied to demand side management where players
included microgrids operator [23], distributed generations (DG) and
storage devices [24], and household owners [25].

The rest of the paper is organized as follows: Section 2 presents the
description of the proposed problem. Section 3 formulates the trans-
active pricing scheme as a hierarchical optimization problem. Section 4
provides the methodology to transform the model into a tractable
MIQCP model. The performance of the proposed model and method is
demonstrated in Section 5. Conclusions together with future work are
given in Section 6.

2. Problem statement and contributions

In our model, each DRA (i.e., participants in the lower level) de-
termines its power consumption considering the other DRAs’ responses
as well as the transactive price signals published by the EUC. The DRAs’
interactions in the lower problem are simulated by a non-cooperative
game in which the Nash equilibrium captures the equilibrium of the
transactive energy framework. Thus, the EUC collects power con-
sumption data published by DRAs, and then optimizes the energy
procurement and calculates the DRAs’ transactive price signal based on
the Nash equilibrium of the transactive energy framework. In Fig. 2, a
stackelberg game-based payoff maximization model is proposed for
EUC which consists of two steps, which is presented as follows.

(1) Upper level — Optimal Energy Dispatch for EUC: EUC calculates the
optimal strategy for bidding in the wholesale electricity market
which uses DRAs’ proposed DR level, uncertain electricity market
prices, and energy procurement from variable distributed energy
resources (DERs). In this case, EUC minimizes the total cost of
purchasing electricity from the bulk market using the worst sce-
nario, which leads to a robust dispatch formulation. In addition, the
transactive price signal is calculated by maximizing the social
welfare for the bulk locational market price which reduces the
DRA’s consumption at peak hours and smooths out the EUC’s load
profile.

(2) Lower level — Transactive Pricing Scheme for DRAs: We constructed
a transactive energy framework where DRAs determine their power
consumption considering the transactive price signal. More pre-
cisely, each DRA is a player in the transactive energy system, which
competes with other DRAs by adjusting its power consumption to
maximize its payoff function with respect to operation constraints.
As we focus on the EUC’s day-ahead energy procurement, the EUC
optimizes the DRAs’ energy procurement and calculates the trans-
active price signal according to the DRA’s power consumption to
form the Nash equilibrium.

The contributions of this work are summarized as follows:
1. The proposed approach combines the Stackelberg game with the

non-cooperative game when modeling the EUC and DRAs.
2. A new pricing model is proposed which calculates the retail price
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considering the total load level to maximize the social welfare.

3. The piecewise McCormick relaxation technique is applied to trans-
form the nonlinear mixed-integer bi-level model into a MIQCP
problem.

4. A new method is proposed to linearize the AC power flow equations
in order to expedite the solution process.

3. Problem formulation

Before the mathematical formulation is presented, the following
assumptions are given:

Assumption 1:. The EUC and RES producers have a take-or-pay contract.
Accordingly, the EUC would purchase all available renewable energy
generation from RES suppliers at a fixed price which is normally lower
than the electricity price from the main grid.

Justification: The take-or-pay contract is widely used in European
countries and United States [7 26].

Assumption 2:. The EUC can estimate the price-response characteristics of
customers by employing historical price-consumption data.

Justification: Some papers such as [27] and [28] use mathematical
tools, e.g., inverse optimization framework, to simulate the demand-
side consumption behavior and further determine the corresponding
model parameters for a DRA.

Assumption 3:. There exists an agreement between the EUC and DRAs to
specify an upper limit on the retail price.

Justification: A large price signal would be unfair for DRAs and a
similar assumption is made in [4] and [7].

3.1. Upper level problem

The EUC acquires electricity from the wholesale market and RES
producers and sells it to end-users. The EUC aims to maximize its payoff
f,» which is stated as f; = Utility — Cost, where,

Utility = ZteT (]/tRPﬁJ + ‘}’lDRP[‘,)Jf (1)

_ 0 RES 5 RES
Cost = ZfeT (AfPt + Eieﬂgss A S ) 2)

The formulation of DRA’s utility is further discussed in Section 3.2.
In addition, the EUC’s payoff maximization considers the worst-case
realization of the wholesale market price, which corresponds to the
following robust presentation:

min max
os | A€
{rmeguyenages)

RES p RES
- Zien}uss ¥ P ) (3)

We define the uncertain set for the wholesale electricity price in a
polyhedral representation as:

D (yf‘Pﬁ,l + yPRPRR — 2,P0

W —Z| <AL YIET ()

1Ar =i
Yier a ST (2o)

Q=141

(4)

The first constraint in (4) ensures that A, values are within
[, = Ad,, A, + A,]. The second constraint indicates that the total
normalized deviation of the market price forecast throughout the
scheduling horizon cannot exceed the predefined parameter I' which is
referred as the budget of uncertainty [29]. The budget of uncertainty I
is within [0, T] which can adjust the robustness of the proposed model.
The uncertainty budget can be determined according to a specified
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confidence level and readers can refer to Appendix. A for details.

As the min-max problem is still intractable for commercial solvers,
we introduce an equivalent form and readers can refer to [30-32] for
more details. The corresponding robust form of (3) considering the
duality theory is stated as

max ZET ()/{RPiI +yRPR -y yRESPRES — 7P — Ef) — 2ol

IEQRES

(5)
where Zg, d; are dual variables and g, is the auxiliary variable and the
corresponding feasible set is defined by

_pfspfoglog5 5I+Z0>M“DIVIET
202 0,820,020 (6)

The optimization model constraints include power flow equations,
bus voltage limits, and operation constraints of inverter-interfaced
DERs. A new linearized power flow model is proposed in this paper and
we put it in the Appendix. B to make the paragraph more fluent. The
limit of voltage magnitude is formulated as:

v <V + AV €W VIiEN 7
Next, DERs are modeled as RES coupled with an inverter and ESS.
1. RES constraints

For any RES i € Qggs in any time r € T, we get:

SIS € X[ (8)

where X5 = {(P,f%“, lf‘,'”

0< PP < PIS, Q< (¢ — (PR 2}.

2. ESS constraints

It is assumed that the ESS is owned by the EUC and the operation
constraints for a single ESS are stated as:

0< Ptdch < th‘h’ 0< Prc'h < FL‘PI VieT
SOC41 = SOC; + (Pyeh/EE — pichyphyddvyy 1 & T\(T}
SOC, = SOCy
S0Cmin £ SOC, € SOC™™ V(e T 9)

where SOC, denotes the initial state of the ESS. Note that com-
plementarity constraints P& P = 0 can be relaxed [12].

3.2. Lower level problem

At the lower level, DRAs determine their power consumption ac-
cording to the transactive price signal and other DRAS’ responses in a
transactive energy framework. The behavior of DRA d is modeled by the
concept of utility function Uy, which represents the DRA’s satisfaction

level stated as a function of its power consumption. Hence, the objec-
tive for DRA d is to maximize the payoff function deR, and stated as:

DR __ DR
= Dy Une = C (10)

where CJ® is the DRA d purchasing cost from EUC.

It is assumed that the utility function is non-decreasing and concave.
Accordingly, a concave quadratic utility function [33] is considered
corresponding to a linear decreasing marginal benefit for DRAd € D in
t € T, which is stated as:

2 2.2 i
S P —va PED if 0 PET <, /2,

Uae = P P, DR
(PR if Piy > &/ 24y 11)
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where Ud(P(f,R) is the DRA’s utility function which is approximated by a
piecewise-linear function, and stated for DRAd e D att € T as

Uss € ap PEE + by Yk E{L LK} (12)

where ag ., and by ., are the slope and the intercept of the k-th segment
linear utility function for DRA d at time t.
The DRA’s payoff function is obtained as

DR _ DR pDR
) I (T i 1)) (13)

Additionally, we introduce a retail price model for DRA, which is
stated as:

YPR=pPy,+Ppi)+8 VIET (14)

where ¢ is the price sensitivity coefficient. The retail price for DRA 3,
is composed of two terms. The first term is proportional to the total load
level, which can effectively implement the peak-shaving. The second
term represents the transactive price obtained from the EUC. In order to
mitigate the price volatility, a multi-step piecewise function, as shown
in Fig. 3, for the transactive price & is employed as:

Sf = 'Sbﬂ.\‘(’ + § * ¢: (1 5)

An upper step limit 1| is set for the price i) to alleviate the market
power of the EUC. Note that the EUC publishes the transactive price
signal 8, as shown in (15), for DRAs and then DRAs submit their power
consumptions the EUC.

For any DRA d € D int € T, the feasible power region of DRA d,
labeled as X%, is formulated as:

XF=(P Y < PSSP (@i ady) (16)

Use € QajeePLF + bae Vhk €L K} (agi,) a7
Bl 2 B (agb]

ZIET (]8)

where aj . af,, ¢ af = 0.

A non-cooperative game is adopted to simulate the transactive
market. The EUC clears the transactive market and determine the retail
price for the DRA in a Nash equilibrium. Hence, we formulate the fol-
lowing DRA game model:

Players: DRAs in set D

Strategies: each DRA d € D chooses its power consumption
PPR e X%, to maximize its payoff function.

Payoff function: f/* for each DRA d € D as stated in (13).

The players’ optimal solution is stated as a nonlinear com-
plementarity problem which will be discussed further in Section 4.
Accordingly, the proposed bilevel optimization problem is stated as:

A -

Lgt

= —

5 s

g

£ g

19])(1.\'2
/\/ i,
0 1 2 |y/|

Step

‘nsactive price.
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The upper level model: obj.(5), s. t.(6) — (9)
The lower level model: 0bj.(13), s. t. (16) — (18) (19)

4. Proposed solution methodology

In this section, we first transform the bilevel optimization problem
into a single-level problem. Then, complementarity constraints in the
KKT conditions are linearized into a GDP model by a piecewise
McCormick relaxation. The rest of bilinear terms are linearized into big-
M disjunctive constraints.

4.1. Bilevel to single-level formulation

In this part, we transform the bilevel optimization problem into a
single-level problem. The proposed Stackelberg game can be written in
a compact form as:

minf; (x, uf, ...,up) (20)

5. L. (x, uy, ...up) € X;. (21)

) {argminfdm (%, 1y, .olip)

Yd=1,..D
s. bocgug) <0 (ag)

(22)
where x and u respectively denote the upper and the lower level vari-
ables and X represent the feasible region of the upper level variables.
The DRA d (the follower) has its own objective f“¥ and constraints ¢; of
which the Lagrangian multiplier is denoted by . If (20) is convex, the
followers choose the optimal strategy using KKT conditions stated as:

VugfPR (X, wyy otip) = Vigeg (ug) g = 0 Vd=1. .D
0<agLeq(ug) €0 (23)

where ay L ¢;(ug) © ag * cq(ug) = 0.

If the lower level problem (20) is a non-cooperative game with a
unique Nash equilibrium, the model (20)-(22) is an MPEC problem.
Thus, we transform the MPEC problem into single-level as follows:

minf; (X, th, ....Uq)
s. 1. {(21), (23)} (24)
Here we define P2, = [PFY, ...
as P2%™ for any d € D,

PR The Nash equilibrium is stated

FE @R PRy 2 71 (PRG, PRR ) ¥ PR € XX (25)
where P* | denotes the total DRAs’ power consumption excluding DRA
d, e, PP, ={PPR, PRR_|, PP, .. . PR%). As the payoff function,
shown in (13), is concave and continuous, and the decision variable for
each DRA, e.g. PP, is assumed continuous, we offer the following
theorem:

Theorem:. The Nash equilibrium at the lower level model always exists and
is unique.

Proof:. Please see Appendix. C.

Thus, for any DRAd € D int € T, the KKT conditions for the lower
level problem are stated as:

;O(Pd{)f + Pﬁ,r + ng) + 8 + arll,s - ad?",r - Zk ad.k.f(x;_k,i‘ - a; =0 (26)

K 3 _ l
Dy s = 27)
OSPYf =P Laj, 20 (28)
0P —PFL aji>0 (29)
0K bypy + g PIF — Ui Lag,, 20 Vk=1,..K (30)
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0<—Eff+ 3 P lajizo0 (31)

4.2. Piecewise McCormick relaxation

Here, we apply the piecewise McCormick relaxation and represent
the relaxed model as a GDP problem. As the GDP problem cannot be
directly solved, we derive a convex hull to relax the problem into a
convex model.

First, if w; = x;x;, the McCormick relaxation is written as:

xixj + xlx; — x/x!

u u U U
; iXjs Wy 2 XX + XX — XX}

=

wy < xlxg + xix — xij'—‘, wy < X{'x; + x}x; - x,”x} (32)
I !

where x; € x; € x, xj < x; € xj'.

For clarity, (26)-(30) are written in a compact form as
gPf a)<0. If w denotes the bilinear terms in g(@f a),
g(Pff{, a, W) < 0 represents the same set as g(Pff, a) € 0 where the
corresponding bilinear terms are relaxed in the McCormick relaxation
form.

Assuming that P is partitioned into L segments, PdDRw) and PPR®
—d,t 4

u
i

denote lower and the upper bounds of P[?f‘ for partition ¢, respectively.
For t € T, constraints (26)—(30) are written in the GDP form as:
Y,

& R D DR(¢
_PthR( ) < PG'P,I\ <P )

g(PPE a, w) <0 (33)

where the Boolean variable Y; € {True, Flase}. Note that in the dis-
junctions only one of the Boolean variables Y, is true.

Introducing auxiliary variables 7, we describe the convex hull of
disjunctions in (33) [17].

@ pdme(e) < Pff(” < r(e)Fj’,"’(")
—d,t ’ ”
T(ﬂ)g(pff(v”)/,(e), a® /7€), W)@y < o
0¥ <g1
L £)

Z&’:l T( ) =1

L 3
Pff=zgszff( ) (34)

Vé¢ell,. . L}

We give an intuitive example to demonstrate the importance of
convex hull for improving the relaxation performance. Consider the
bilinear terms xy = 1 and 0.5 € x € 2, 0.5 € y £ 2. In Fig. 4, the orange
line denotes the linear constraints, i.e., (26)-(27). If we directly apply
the McCormick relaxation, the relaxed region will be the union of red
and blue areas. However, when employing the piecewise McCormick
relaxation, the corresponding convex hull obtained from (33) shrinks to

\ I
2r - I Convex hull of GDP |
\ Il Cut-off region
A Bilinear term
—— Constraints
----McCormick relaxation
1.5+ i
BN
1r i
0.5+ R

0.5 1 1.5 2

"the GDP convex hull.
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the red area. Thus, the proposed relaxation in our method is tighter and
thus guarantees a more accurate solution.

4.3. Fortuny-Amat transformations method

As (31) is temporally coupled with T bilinear terms for any d € D, it
is unreasonable to directly apply the McCormick relaxation as it may
incur a large gap and many constraints. Accordingly, (31) is relaxed
into big-M disjunctive constraints based on the Fortuny-Amat trans-
formation, which introduces D integer variables and may not increase
the computational burden. Hence, for any d € D, (31) is be re-
formulated as:

0< X, er Pix = B < MB;
0<af <M1 -8 (35)

where ,@; € {0, 1} and M is a big number. An analytical approach is
provided in Appendix. D to determine the minimum value of M.

There are still some bilinear terms in the objective functions.
Similarly, EQD,PIL))";’ is transformed into bilinear expressions by a binary
expansion described as:

Sy PO = 82987 PRY + 2187, Ppt + . +27B 1, Py
0< 2987 + 287 + .. +27B2, < Iyl (36)

where ,8!2 € {0, 1}. For given a real number a, |a] rounds a to the nearest
integer towards minus infinity. The integer ¥ is determined by

¥ = |log,(Iyl)|. For any v < ¥# in any time slot V r € T, the bilinear
terms in (36) are linearized as:

PRf—MQ - B2) <6, < Pot + M- BY) v

N 5 vy=0,1,..7
— MB;, <6, < MB, (37)
where 6, ,, = PS¥? . Here the minimum value of M can be set as P{*t.

Accordingly, the original model is transformed into a MIQCP pro-
blem which is stated as:

obj.(5)
5. 1. (6) — (9), (34) — (35), (37) (38)

5. Numerical results

In this section, we consider the modified IEEE 33-bus and 123-bus
test systems to demonstrate the performance of our model. The nu-
merical experiments are conducted in MATLAB R2014a on a personal
computer with an Intel Core (i7, 2.80 GHz) and 8 GB memory. SCIP 3.2
is invoked to solve the MIQCP.

5.1. Simulation data

We assume the EUC owns an ESS, located at the slack bus, and does
not own any RES. The EUC has take-or-pay contracts with local RES
farms for fixed price purchases. Given that the photovoltaic (PV) arrays
represent a dominant DG in medium and low voltage distribution sys-
tems, we only apply PVs to our test cases with the corresponding data
given in [34]. We assume all the PV arrays share the same solar irra-
diance. The ESS parameters are given in Table 1.

The electricity price forecasts and load variances are taken from the
PJM website [35]. A time-of-use (TOU) scheme is also considered,

Table 1
ESS parameter values.

PAehMW) PAMW) Ex(MWh) SoCmax soCmin 7 e

0.6 0.6 3 0.95 0.1 0.9 0.9
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Table 2
System parameters.
Parameter Value Parameter Value
¥R 505/MWh [ 38%/MWh
yRES 30$/MWh SBpase 20$/MWh
pDR 0.8 MW pDR 0.16 MW
EDR 11.60MWh é 14 $/MWh
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Fig. 5. Total power consumption in modes 1, 2 and 3: (a) IEEE 33-bus test
system, (b) IEEE 123-bus test system.

which divides a single day into peak and off-peak hours. We assume 3
DRAs connected at buses 17, 20, 32 in the 33-bus test system, and 7
DRAs at buses 13, 23, 44, 54, 72, 108, 116 in the 123-bus system, use
the same parameters. The DRA power factor is 0.89. The system para-
meters and DRA data are given in Table 2 with the additional data
presented in [36].

5.2. Performance of modes

® Mode 1: Consider the proposed optimization model. DRAs choose
an optimal solution according to EUC’s price signals.

e Mode 2: Consider the fixed retail price applied to DRAs. In this
mode, DRAs have no incentives to adjust their loads.

¢ Mode 3: Consider TOU pricing for DRAs.

To demonstrate the effectiveness of our model, we assume there is
no ESS integrated into the network in three modes; we will study the
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Fig. 6. Price for DRA: (a) 33-bus test system, (b) 123-bus test system.

Table 3
Comparisons between three modes for 33-bus system.
Mode 1 Mode 2 Mode 3
EUC’s payoff ($) 1242.3 1174.3 1255.1
DRA payment ($) 1867.2 2071.3 2152.2
DRA consumption (MWh) 39.71 41.40 42.51
Average price for DRAs ($/MWh) 47.0 50.0 50.6
Network loss ratio (%) 5.27% 5.44% 5.47%
Table 4
Comparisons between three modes for 123-bus system.
Mode 1 Mode 2 Mode 3
EUC’s payoff ($) 2719.9 2746.3 2898.8
DRA payment (§) 4751.1 4832.9 4958.9
DRA consumption (MWh) 100.6 96.66 99.18
Average price for DRAs ($/MWh) 47.5 50.0 49.9
Network loss ratio (%) 6.71% 6.68% 6.78%

impact of ESS in Section 5.4. In Fig. 5, the proposed model has flattened
the load curve effectively. In Fig. 6, when the electricity market price is
high (e.g., 10 am to 8 pm), the transactive price signal increases and the
DRA power consumption decreases. Conversely, the transactive price
signal is low between midnight and 10 am, when the DRA power
consumption increases. Thus, the proposed transactive DRA price can
effectively reflect the underlying wholesale locational marginal prices.

In Tables 3 and 4, the EUC’s payoff in mode 1 is less than that in
mode 3 but higher than that in mode 2 for IEEE 33-bus system. Note
that the average electricity price for DRAs in mode 1 is the lowest
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Table 5
Comparisons between two methods for 33-bus test system.

Method in [7] Proposed method
L=1 L=2 L=3
Number of integer variables 435 75 75 75
CPU time (s) 165.0 130.7 143.7 171.5
EUC’s payoff ($) 1242.9 1252.8 1243.1 1242.3
Table 6
Comparisons between two methods for [EEE 123-bus test system.
Method in [7] Proposed method
L=1 L=2 L=3
Number of integer variables 1015 175 175 175
CPU time (s) 868.0 487.2 616.0 968.8
EUC’s payoff ($) 2721.3 2738.4 2725.7 2719.9

among the three modes for both IEEE 33-bus and 123-bus systems.
Thus, our model can effectively alleviate the EUC’s market power and
guarantee the interest of DRA. Compared with mode 2, the DRA in our
model consumes more power at a lower cost which shows that our
model offers a more suitable retail price scheme to guarantee the in-
terest of DRAs. For IEEE 33-bus test syetem, the network loss ratio in
mode 1 is lower than that in mode 3. This indicates that peak shaving
and load shifting applied in our model would lower network losses and
improve the efficiency. Note that in the 123-bus system the loss ratio in
mode 1 is slightly higher than that in mode 2 as DRAs in mode 1
consumes more power.

5.3. Efficiency of the proposed algorithm

We linearized complementarity constraints into disjunctive con-
straints through the Fortuny-Amat transformation method [7]. Nu-
merical results for the IEEE 33-bus and the IEEE 123-bus systems are
listed in Tables 5 and 6, respectively in which the objective function
decreases with increasing L. Accordingly, additional segments in par-
titioned PP® would shrink the enlarged feasible region. Thus, the pro-
posed relaxed model achieves more accurate results. In Tables 5 and 6,
when L is equal to 2, there are 0.06% and 0.2% gaps between the results
presented in our method and those in [7] for 33-bus and 123-bus sys-
tems, respectively. However, the corresponding computation time is far
less than that in [7]. More importantly, when L is equal to 3, our
method offers more accurate results indicating that our relaxation
method is tighter than that of the Fortuny-Amat transformation [7].

2820
2800
&
=
= 2780
(=]
T
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.
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5.4. Sensitivity analysis

In this section, we analyze the impacts of ESS capacity and the
budget of uncertainty using the IEEE 123-bus test system. We change
EB from 1 to 3 MWh at 0.5 MWh steps while keeping the other para-
meters the same as those in mode 1 of Section 5.1. In Fig. 7(a), the
EUC’s payoff increases considering a higher ESS capacity which can
deliver a higher level of energy when wholesale electricity prices are
higher. The EUC can accordingly avoid peak prices and purchase more
electricity at relatively low prices.

We change the budget from O to 16 at a step size of 4 while other
parameters remain the same as those in mode 1 of Section 5.1. In
Fig. 7(b), the EUC’s payoff decreases as the budget of uncertainty in-
creases because a larger budget allows a larger deviation in market
price forecasts. Hence, the purchase cost from the wholesale market
increases. Additionally, the budget choice is a tradeoff between higher
payoffs and lower risks.

5.5. Accuracy of linear power flow

In order to demonstrate the accuracy of our power flow lineariza-
tion, we provide the voltage magnitude difference between our results
and those of the Newton-Raphson method. A comparison is also made
between our method and that of [37]. In this case study, we set
v=(V—-1),¢{=0 and V = 1.05 in the case study. Fig. 8 depicts the
results where the differences obtain based on our method are much
smaller than those in [37]. The results demonstrate that our lineariza-
tion technique can lead to a higher accuracy for the EUC operation.

6. Conclusions and future work

In this paper, we proposed a transactive dynamic pricing scheme for
DRAs that maximizes the EUC’s payoff. A bi-level solution is applied in
which a Nash equilibrium is calculated at the lower level for DRAs. The
bilevel model is transformed into a single-level model by using the KKT
conditions to represent the optimality at the lower level problem. GDP
is introduced by linearizing complementarity constraints and applying
the piecewise McCormick relaxation. The proposed model calculates
the EUC’s optimal energy procurement in the wholesale market and
optimal price signal to dispatch the DR resources.

In the proposed model the lower level feasible region for each DRA
depends only on its own operation constraints, while interrelations
among DRAs are neglected. The coupling relationships such as spatio-
temporal coupling among DRAs and the EUC will be investigated in our
future efforts. In this case, the game model would be extended to the
generalized Nash equilibrium and Stackelberg games in which the
proposed solution method is still applicable. Besides, the method used
to determine values of coefficients in the presented linearized power

3300

31001

2900

Profit($)

2700

5
2300 0 4 8 12 16

Budget of uncertainty

(b)

7. Sensitivity analysis: (a) Impact of ESS capacity, (b) Impact of budget of uncertainty.
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Fig. 8. Accuracy of linear power flow: (a) 33-bus test system (b) 123-bus test system.
flow model needs to be further studied. A data-driven method may be a interests or personal relationships that could have appeared to influ-
good option to determine the optimal values of the coefficients, e.g., v ence the work reported in this paper.

and ¢, based on field measurements in the power system
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Appendix
A. Determination of the uncertainty budget

Here we present a new way to determine the uncertainty budget according to a specified confidence level. The polyhedral representation for the
uncertainty is given as
=7 <Ak Vi

a=tal s Mty
Ter w ST (A1)

Let ¢ = %!I" If {1,| ¥ t € T} is a sequence of independent and identically distributed random variables, then {¢| V¥ 1 € T} is also a sequence of

independent and identically distributed random variables. We further assume E[€,] = ¢ and D[£] = ¢*. According to the Lindeberg-Lévy central
limit theorem, we have

-

. b —u d

lim ) - = N, 1)
= JTo

T—o0 (AZ)
If the confidence probability for the budget constraints is set as o, we get
T
b —u
< o' (a)
Then, it attains
I'=Tu+ o Ha)VTo (A4)

r
Note that although the number of time slots T is 24 in our work, it is assumed that the random variable }, % approximatively converges in

distribution to a normal N (0,1). When the number of time slots increases, for example to 96 (one day is di\t/_itl:led into 96-time intervals and each
interval represents 15 min), the accuracy increases accordingly. The detailed study on how the number of time slots influences the convergence of
the random variable toward a normal distribution is out of scope of this paper.

Next, we present an example for deriving the expectation E[¢] and variance D[4,] of random variable €. It is assumed that the wholesale
electricity price 4, is distributed normally with E[Z,] = A,and D [A4] = (A,/10)2. Additionally, we assume A4, = 3 % 7,/10 so that the estimate interval
[I, — Al 2+ Al,] can capture the true value of A, with a confidence level of 99.74% . On this basis, we have

A=A, d

&) ="—"t 5 N(0,1/9)and ¢, = |£}
Y (0, 1/9)and € = |&7] (A5)

For brevity, the subscript t is neglected hereinafter. Let f (£) denote the probability density function with respect to random variable £. We have
+oo +oo 30 e’ 6 +oo 9(e)? 9(e”)? 9(£")2
E[¢] = of (€)dé = 169 —=¢~ 2 d¢’ = — % 2 dt° =— ~ 2 df——
1= [ e = [ el wh

2 +oo
——— e
32w ']f: 2
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12

3IVx (A6)

2
sae 0 b=

D[#] = E[¢%] — E[¢]® = E[(¢°)*] — E[¢] = D[¢°] + E[¢°P — E[¢] = 1(1 - i)

9 T (A7)

When the confidence probability for the budget constraints is set as 99.99%, the lower limit for the budget is 7.17.
B. The linearized power flow equations

In order to speed up solution process, a new formulation of the linearized AC power flow is devised. At first, the bus injection model is formulated
as:

S = diag(V)I* = diag(V)(Y*V, + YR V) (B1)

RN RN
I v Y wl|lV (B2)
where the admittance matrix Y is partitioned into al x 1 matrix y,, a(N — 1) X 1 column vector Y, a (N — 1) X (N — 1) square matrix Yy. We assume

bus 0 is the slack bus. For a given vector x, diag(x) denotes a diagonal matrix whose diagonal elements are composed of x.
Next, a linear approximation of AC power flow in rectangular coordinates is given. According to (B2),

I1=YV,+ YyV (B3)
Let V denote the vector of upper limit of the nodal voltage magnitude. If V=V + AV, expanding (B1), we get:
S — E = ®AV + IIAV* + diag (AV)(Y5AV*) (B4)
where
E = diag (V)(Y*Vy) + diag (V)(YRV*)
11 = diag(V)Y7%
0 = diag(Y*Vy + Y5, V) (B5)
Note that all the nonlinear terms exist in diag (AV)(Y}AV*). For brevity, let f(AV, AV*) represent diag (AV)(YyAV*). Obviously, f(AV, AV*) is

continuously differentiable with respect to the real and imaginary parts of AV. According to the work in [39], the following formulation is used to
linearize the function f.

S AV, AV*) = Tl geav)—v

Im(AV)=¢

Re(AV)
Im(AV)

(B6)

where J = [f/0(Re(AV)) df/3(Im(AV))] which is a complex Jacobian matrix. Here we abuse the concept of mean value in the mean value theorem. v
and ¢ can be seen as the mean values of the real and imaginary parts of AV, respectively. Thus, it yields:

P—Re(® | |[Re(@ + 1) Im(I-®) L [ Re® Re(AV)
Q-Im@3@) | ||m© + 1) Re(® — 1) Im() |reavi=» || Im(AV)
Im(AV)= (B7)

Obviously, the values of v and ¢ play a pivotal role in the accuracy of the linearized model above. In a non-stressed system, bus voltage
magnitudes are usually close to 1 p.u. and phase angle differences are nearly equal to zero. For simplicity, the flat voltage solution is applicable
where v = (V — 1) and ¢ = 0. Note that it is assumed there exist only PQ buses and slack bus in a distribution system. As for the systems including PV
buses, the similar equation for the nodal voltage magnitude can be obtained. Besides, the same approach can be adopted to derive a linearized model
for unbalanced multi-phase grid in a similar manner and we do not repeat it again.

In addition, through some reasonable assumptions, (B4) can be transformed into DC power flow formulations. First, neglecting the nonlinear
terms in (B4) yields

S — E = BAV + ITAV* (B8)
Specifically, the real part of (B8) can be written as
P — Re(Z) = Re(BAV) + Re(IIAV¥) (B9)

By assuming zero shunt admittances and defining V = 1, then Re(E) = 0 and Re(®AV) = 0.
On this basis, (B9) can be written as P = Re(IIAV*) = Re(Y,) Re(AV) - Im(Y,)Im(AV). If lines are purely inductive, i.e., Re(Yy) = 0, then

P = -Im(Y,)Im(AV) (B10)

Since the angle difference between the two terminals of a transmission line is usually small and 8 =~ Im(AV), then when the angle is represented in
radians, the following equation can be attained:

P = -Im(Yy)6 (B11)

(B11) is actually the DC power flow model. As the proposed model can address nonlinear terms in (B4) without the above simplifications
required, and hence can attain more accurate solutions.

10
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C. Proof of the theorem

Here, we present a detailed proof based on the method proposed in [38]. The utility function in our model is linearized by a piecewise -linear
function. As a large number of demand response resources are aggregated, we approximately assume the power of each DRA P,j + is a continuous
variable.

For brevity, we define PJ% = % aep P R and PHF =3, 4eD P2%. We define o(x) = éqof (x) and the pseudo gradient of o(x) can be defined as
follows: l
g = Vg, (x), .. N%@, (T (cn
Definition: o (x) is diagonally strictly concave for x if for every x', x°, we have
&= x0g(x) + (x° —xYg(xH >0 (€2)

where x' denotes the transpose of x.
Next, we show ¥, o /7% (PP%. ..PJ¥) is diagonally strictly concave. According to (C1), we get

g, PP, URY, UPR) = [WfPR, R T (C3)
where [Vif%, . VofPX ) = [—(PR¥ + PPS + PR) + 8, ..—@ (PP + PP + PR + 8,1, ...1)
D
Define:
X! = [P, L PREY, UPEO, L Ugs) ()
x0 = [P2@, PP, UPRO, L UPRO) (C5)

Substituting (C4) and (C5) into (C2), as ¢ > 0 and x' # x°, we have,
DR(1 DR(0 DR(1 DR(0]
¢ IPp" Y — PRI + 93 IIPLEY - PYYVIE > 0 (c6)
Thus, o (P8, ....P%) is diagonally strictly concave. In addition, fD"‘ (PP, PR ) is a concave function (In our model it is a concave quadratic
function) and the allowed strategies are limited by the requirement that the decision variables (e.g., P?ﬁ) is selected from a convex and closed set (In

our model it is a closed polyhedral set as represented by X;¥). According to Theorems 1 and 2 in [38], a Nash equilibrium always exists and is
unique.

D. Determination of the M in disjunctive constraints

Here we show how to determine the lower limit of M in (35). The Lagrangian multiplier « is the sensitivity of the objective function (13) of DRA
with respect to the right hand term Y, _ B{F. Suppose that EP* increases to Ef* + AEf® | the optimal value of objective function of DRA d is also
changed accordingly. First, let us 1nvest1gate the change in the cost term. The maximal incremental cost may happen at the highest retail price
period. Thus, the incremental cost AC, respects the following inequality:

ACy € max{AEd s yPR}

= max{AEdDR * @(PDI\ + P]:L“) + AE, DR * (%bm’e + 5 * 1”(}}

teT

< max{AEPR « cp( Zd b PR+ Pﬁ,,) + AEPR & (Spae + B = 19I)
€T € (D1)

The maximal change in the utility function is described as

AU £ AE
i< Iglﬂx { * g k) (D2)

Let AQ, denote the change in the objective function. Both C; and Uy increase monotonically with respect to ¥, _— Pf¥. Therefore, AC; > 0 and

AU; = 0. We have <

AQq = AUy — ACy; € ACy + AT (D3)
As a result, we get

ai<IAQ/AESR| < |ACy + AUI/AE®

< I}gx{cp( ZdED PP+ Py, !J + (Bpase + 9 # Il/)l)} + I{nax {agid =M D)

We assume DRA has the same utility function for every time interval. If not, we enumerate all time intervals and choose the largest one to
substitute into (D4).

The above is seen as a general method to determine an appropriate value of M. Besides, in our model as we can determine the sign of AC; and AUy
in advance, we derive a tighter lower limit on M. As AEP® increases to EP¥ + AEPR | we have AQy < 0. Thus, it is only necessary to calculate the
minimal value of AQg. Thus,

If min {AEPR % a.. 1 < mﬂqrx{AEdDK * 9(Vgep Par + P + AE® % (Spase + 5= 1ph)}

11
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4 < |AQu/AEPR| € PPRAPE |+ Bpase + 8 % )} — min {aget=M
oy < |AQu/AES] € I‘lﬂga_lfi @ ZdeD dt Nt | + Bhase Pl kE“W’K‘{ dkt) ©05)
Otherwise, according to AQg £ 0 and AQy = AUy — ACy = 0, we have
AQq = 0and 0 € & < [AQq/AET| =0 (D6)

In this case, M = 0. This is reasonable because AQ, equal to zero implies that the inequality (35) is not binding and thus the corresponding
Lagrangian multiplier is zero. In our model, M is set at 120.

Appendix A. Supplementary material
Supplementary data to this article can be found online at https://doi.org/10.1016/].ijepes.2019.105764.
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