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Abstract

The wide deployment of distributed energy resources, combined with a more proactive
demand-side management, is boosting the emergence of the peer-to-peer market. In the
present study, an innovative peer-to-peer energy trading model is introduced, enabling a
group of price-setting prosumers to engage in direct negotiations via a straightforward
best-response approach. A Nash equilibrium problem (NEP) is initially formulated and a
sufficient condition for the unique solution of the NEP is derived. Afterwards, an asyn-
chronous and convergence-fast solving method is employed to determine the trading
quantity and price. The efficiency and resilience of the presented method are demonstrated
through a comprehensive case study.
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1 INTRODUCTION

Peer-to-peer (P2P) energy trading facilitates direct communi-
cation and energy exchange among prosumers outspread in
distribution systems. These prosumers represent various stake-
holders engaged in negotiations for energy trading quantities
and prices independently, proactively, and anonymously, while
preserving privacy.

The most direct approach toward addressing the aforemen-
tioned requirements is employing distributed optimization
techniques, such as the Lagrangian relaxation-based method
(LR-M), to solve an assignment problem within a pool-like
local energy market [1] or a game-theoretic framework [2].
However, this approach is primarily limited by lack of eco-
nomic intuition during the iteration process. For example, in
LR-M [1], a prosumer often acts as a price taker, aiming to
maximize the decomposed augmented Lagrangian function
instead of their individual objective functions. Consequently,
pricing is determined using gradient-like methods instead of a
pricing model. In addition, certain limitations of LR-M, such
as slow convergence (as revealed by Ullah and Park [1]) and
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parameter tuning, render it unsuitable for real-world scenarios.
Some existing publications focused on pairing peers for trading
through models such as bilateral contracts [3] or continu-
ous double auctions [4]. However, in these frameworks, the
decision variables, i.e. the quantities of traded electricity and
corresponding prices, must be discretized within the price- or
quantity-matching algorithm. The existence of bilinear terms
resulting from the multiplication of price and quantity, which
could potentially attenuate the efficiency of the outcomes, is the
reason underlying the aforementioned requirement. In terms
of communication resilience, the price adjustment process [3]
and iterative double auction [4] can implement asynchronous
transactions, where each agent takes one match in every time
period. However, both processes are limited by suboptimality
owing to the discretization issue mentioned above and exhibit
an upper bounded gap in social welfare maximization. LR-Ms
[1, 2, 5] require operation in the synchronous mode and are
thus vulnerable to communication failures [5].

To address these limitations, a communication-resilient and
convergence-fast P2P energy-trading scheme is proposed in this
study. The major contributions of this work are as follows.

Energy Convers. Econ. 2024;1–6. wileyonlinelibrary.com/iet-ece 1

https://orcid.org/0000-0002-3829-4302
https://orcid.org/0000-0002-6838-2602
mailto:jiajia.yang@jcu.edu.au
http://creativecommons.org/licenses/by-nc/4.0/
http://wileyonlinelibrary.com/iet-ece
http://crossmark.crossref.org/dialog/?doi=10.1049%2Fenc2.12116&domain=pdf&date_stamp=2024-04-22


2 FENG ET AL.

1) A sufficient condition for the unique solution of the Nash

equilibrium problem (NEP) is provided with a clear
explanation of its economic rationale using the cobweb
theory in economics.

2) A straightforward best-response algorithm, such as those
outlined by Pandzic et al. [6] and Wang [7], is designed, and
aligns with the negotiation mechanism in the P2P energy
market to derive the solution.

3) The convergence analysis of the best-response algorithm is
validated using a proposed iterative clearance mechanism for
facilitating implementation in practical scenarios.

The remainder of this paper is organized as follows. In
Section 2, the basic P2P energy-trading scheme is elaborated.
Section 3 presents the solution methodology and certain vali-
dations. Numerical results are presented in Section 4 to validate
the proposed models and algorithms. Finally, Section 5 presents
the conclusions drawn and the scope for future research.

2 PROPOSED P2P ENERGY TRADING
SCHEME

A local energy trading market with I prosumers, who can either
be buyers or sellers at any given moment, is considered. Sellers
are presumed to offer quantities, whereas buyers bid on trad-
ing prices according to a negotiation mechanism. Consequently,
a stable trading coalition constituting multiple sellers and one
buyer will be formed because sellers always choose the high-
est bidder, and buyers do not exhibit any preference for energy
from distinct sellers because energy is a homogeneous prod-
uct. Therefore, the prosumers naturally form several coalitions
in each of which the I prosumers, denoted by index i, can be
divided into (I − 1) sellers and one buyer, denoted by i = I .
An iterative clearance mechanism is proposed in Section 3 to
address the scenario where multiple sellers and buyers exist to
attain a stable market outcome. Subsequently, a gaming model
for P2P energy trading is established.

2.1 Sellers’ model

The sellers must minimize their operational costs according to
the buyer’s bidding price. For seller i at time t , the operational
problem can be modelled as follows:

max
PSi,t

Ci,t

(
PSi,t

)
− 𝜋t × PSi,t (1)

Ci,t

(
PSi,t

)
= 0.5 × ai,t

(
PSi,t

)2
+ bi,t PSi,t + ci,t (2)

PSmin
i,t ≤ PSi,t ≤ PSmax

i,t (3)

where ai,t , bi,t , and ci,t are the parameters of the seller’s cost
function. 𝜋t is the bidding price from the buyer at time t . PSi,t

is the selling power of seller i at time t . PSmin
i,t and PSmax

i,t are the
minimum and maximum generation outputs of the seller.

2.2 Buyer’s model

The buyer must establish a pricing model that considers the
price elasticity of sellers, which can be estimated based on his-
torical market outcomes. For seller i at time t , the supply curve
can be approximated as a linear function:

PBi,t =
𝜋t − b̃i,t

ãi,t
(4)

where b̃i,t and ãi,t are parameters in the estimated supply curve
and obviously ãi,t ≈ ai,t which follows readily from the second-
order derivative (1). PBi,t represents the estimated buying power
from seller i at time t . Therefore, the pricing model can be
expressed as follows:

min
𝜋t

𝜋t ×
∑

i
PSi,t + 𝛾

∑
i
diPBi,t −Ut

(∑
i
PBi,t

)
(5)

Ut

(∑
i
PBi,t

)
=

⎧⎪⎪⎨⎪⎪⎩
𝜆t

∑
i
PBi,t − 0.5𝛽t

(∑
i
PBi,t

)2 ∑
i
PBi,t

≤ 𝜆t∕𝛽t

𝜆2
t ∕ (2𝛽t ) otherwise

(6)

𝜋min
t ≤ 𝜋t ≤ 𝜋max

t (7)

PBmin
t ≤

∑
i
PBi,t ≤ PBmax

t (8)

where 𝛾 is network usage charge per unit electrical distance, and
di is power transfer distance between seller i and the buyer.
𝜋min

t and 𝜋max
t are the feed-in tariff (FiT) and retail price,

respectively. The utility function for buyer Ut is a piece-wise
concave quadratic function, and 𝜆t and 𝛽t are the parameters
of the buyer’s utility function, which can be determined by the
buyer. PBmin

t and PBmax
t are the minimum and maximum power

demanded by the buyer, respectively. Note that time index t is
omitted hereafter except when stated otherwise.

Remark: An appropriate assumption is that the P2P trading
price should be higher than the FiT but lower than the retail
price, as shown in (7), which could effectively guarantee benefits
to both buyers and sellers.

2.3 Game model

Based on decision-making models of the seller and buyer, P2P
energy trading can be formulated as a gaming model.

1) Players: sellers and buyers denoted by i ∈ 
Δ
= {1, … , I}.

2) The strategy set for player i, denoted by i , that is, (2)–(3)
for a seller or (7)–(8) for a buyer, is closed and convex.

3) The disutility function for player i, denoted by f i , that is, (1)
for a seller or (5) for a buyer, is continuous over set i .
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FENG ET AL. 3

f
Δ
= ( fi )

I
i = 1, and the joint strategy set is obviously a Carte-

sian product of each player’s set, i.e.  =
∏I

i=1 i . Therefore,
the gaming model is formally expressed as tuple  = ⟨, f⟩ .
For brevity, we denote the decision variables of player i as

xi . x
Δ
= (x1, … , xI ) denotes the vector of all players’ decision

variables, while x−i

Δ
= (x1, … , xi−1, xi+1, … , xI ) denotes the

vector of all players’ decision variables except that of player i.
Therefore, the optimization problem for the buyers and sellers
can be expressed in a compact form.{

min
xi

fi (xi , x−i )

s.t . xi ∈ i

(9)

3 SOLUTION METHODOLOGY

3.1 Existence and uniqueness in the
variational inequality VI formulation

For facilitating the analysis of the existence of the Nash equilib-
rium and convergence, the game model could be reformulated
as a VI problem. Given that strategy set i is convex and closed
and its (dis)utility function is continuously differentiable in xi

for every fixed x−i , the game  is equivalent to a VI problem
(denoted by VI(,F)) of finding a feasible vector x∗ ∈  such
that [8, Prop. 1.4.2]

(x − x∗ ) F (x∗ ) ≥ 0 ∀x ∈  (10)

where F is the vector-valued function and F(x)
Δ
=

(∇xi fi (x))I
i = 1.

Building on the existence/uniqueness results for the VI, the
following lemma can be obtained:

Lemma 1. [9]: Given the VI(,F), suppose that  is closed and

convex, and F is continuous on . If F is strongly monotone on , the

game  has a unique Nash equilibrium (NE).

Verifying these properties via the direct application of the
definition is not infeasible. To streamline the subsequent analy-
sis of the unique solution and the convergence of the proposed
algorithm, two real matrices ΥF and ΓF are introduced, as
expressed as:

[ΥF]
i j

Δ
=

{
𝛼min

i
i f i = j

−𝜃max
i j otherwise

and [𝚪F]
i j

Δ
=

{
0 i f i = j

𝜃max
i j ∕𝛼min

i otherwise
(11)

with

𝛼min
i

Δ
= inf

x∈
𝜆s

(
𝝋T

i JiFi (x)𝝋i

)
and

FIGURE 1 Economic interpretation for Lemma 2:(a) the convergent
case; (b) the divergent case.

𝜃max
i j

Δ
= sup

x∈

‖𝝋T
i

J j Fi (x)𝝋 j‖ (12)

where 𝝋i with i = 1, … , I , is a set of arbitrary non-singular
square matrices. 𝜆s(A) denotes the least eigenvalue of A. J j Fi (x)
is the Jacobian of Fi (x),

Based on the above definitions, the P-matrix is invoked
to study the existence and uniqueness of VI(,F)), which
also plays a crucial role in the convergence of the proposed
algorithm.

Definition 1. Matrix M is called P-matrix if every principal
minor in M is positive.

Remark: Although the related matrices in the presented
model are real, we still introduce the properties of the complex
matrix in the VI theory to study the model for consistency and
rigor. According to the properties of the P-matrices, establish-
ing the relation between the monocity of F and P-property of
ΥF, as shown subsequently, is easy.

Proposition 1. [8]: Given that F is continuously differentiable with

bounded derivatives on the closed and convex set , if ΥF is a P-matrix,

then F is strongly monotone on .

Combined with Lemma 1 and proposition 1, the sufficient
condition for the game  = ⟨,F⟩ to have a unique solution
is that matrix ΥF is a P-matrix.

Lemma 2. Matrix ΥF for the game model  is a P-matrix when 𝛽 >

maxi∈{ai}∕(I − 1).

Proof. See Appendix.

Next, we explain the economic rationale behind Lemma 2
using the cobweb model shown in Figure 1. The condition
in Lemma 2, that is, 𝛽 > maxi∈{ai}∕(I − 1), is equivalent to
(I − 1)∕maxi∈{ai} > 1∕𝛽. The left side of the latter inequality
can be regarded as the slope of the aggregated supply curve
of the (I − 1) sellers while −1∕𝛽 is the slope of the buyer’s
demand curve. When the demand curve is more elastic than the
supply curve, i.e. (I − 1)∕maxi∈{ai} > 1∕𝛽, the fluctuation
in each iteration is successively closer to the intersection as
shown in Figure 1.; therefore, the energy trading model attains
a unique solution. In addition, when 𝛽 is large, i.e. 1/𝛽 is small,
the demand curve is relatively elastic; therefore, the optimal
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4 FENG ET AL.

response algorithm that will be detailed in Section 3.2 can
reach equilibrium relatively easily. While in the divergent case

I−1

maxi∈ {ai }
< 1∕𝛽, the fluctuations increase with each cycle and

thus it cannot reach the equilibrium as in the right diagram.

Remark. The condition in Lemma 2 provides the lower bound
for 𝛽. Such a condition is naturally satisfied in practical scenarios
because the sellers with the renewable energy usually have near
zero marginal cost and further the term on the left side goes to
zero when I →∞.

3.2 Solution algorithm and convergence
analysis

Preliminary definitions should be provided to formally describe
the asynchronous algorithm. Leti ⊆  = {0, 1, 2…} denote
the set of times at which xi is updated and 𝜏i

j (n) denote the
most recent time at which player i receives the message from
player j at the n-th iteration, and obviously satisfies 0 ≤ 𝜏i

j (n) ≤
n. In addition, we conduct the convergence analysis of the
proposed best-response algorithm based on the partial asyn-
chronism [8]. Specifically, communication delays are bounded.
A positive integer B is assumed to exist, such that

n − B ≤ 𝜏i
j

(n) ≤ n (13)

This implies that each player can perform an update at least
once during any time interval of length B. B is commonly known
as an asynchronism measure that represents the longest possi-
ble communication delay. The asynchronous algorithm based
on the players’ best responses is described as follows.

Asynchronous Best-Response Algorithm (ABRA)

(S.0) Choose any feasible x(0) and set n = 0.

(S.1) Check the termination criterion.

(S.2) For each player i, compute (9).

(S.3) Set n = n + 1 and go to S.1.

Lemma 3. If ΥF is a P-matrix or equivalently 𝜌(𝚪F ) < 1, any

sequence generated by ABRA converges to the NE of .

Proof. According to [9, Theorem 10], ABRA is a block contrac-
tion. Then, based on the theorem in [10, Prop. 2.1], every limit
point of ABRA is a fixed point of argmin f, namely, the NE of
. As proved by Lemma 3, the synchronous version of ABRA is
a contraction with a modulus ‖𝚪F‖ ≤ 1, meaning that it would
converge to the NE geometrically with the rate ‖𝚪F‖. There-
fore, it easily determines the number of iterations required to
achieve the desired accuracy 𝜎.

Lemma 4. Denote the NE of G by xE. If ‖x(n) − xE‖ ≤ 𝜎 for any

positive n ≥ n̄, then n̄ = log(
𝜎(1−‖𝚪F‖)‖x(1)−x(0)‖ ) ∕ log(‖𝚪F‖).

Proof. See Appendix.

ABRA shares the same convergence performance as the
synchronous version. ABRA shares the same convergence
properties as its synchronous version. However, unlike the syn-
chronous version, the bound on the convergence rate of ABRA
is given by asynchronism measure B. For further details, please
refer to [10, Prop. 3.2].

3.3 Implementation mechanism

The P2P market simultaneously constitutes multiple buyers and
sellers to negotiate the traded quantity and price. An itera-
tive clearance mechanism is proposed to make our model (i.e.
a one-buyer-multiple-seller game model) compatible with this
practical scenario. In the first round of the clearance mecha-
nism, each buyer forms a one-buyer-multi-seller game model,
which consists of one buyer and all sellers in the market. Then,
all these game models are solved, and the buyer who offered
the lowest price at equilibrium would obviously have the right
of first refusal to purchase electricity. Then, the remaining buy-
ers and sellers simply iteratively repeat the same thing as in the
past round until the sellers, buyers, or both are insufficient.

In addition, in each round of the clearance mechanism, the
buyers or sellers only solve their decision-making model, that
is, to computer (9), without declaring any private informa-
tion to the central operator or other participants. Information
exchanges among participants consist only of traded quantities
and prices.

4 CASE STUDY

In this case study, 10 prosumers (9 sellers and 1 buyer) were sim-
ulated, and the cost (or utility) parameters were cited from the
study by Chen et al. [2]. Numerous gradient-like methods [11],
including the basic projection method (BPM), Tikhonov regu-
larization scheme (TRS), and proximal point scheme (PPS), for
solving monotone VIs exist. In the present study, ABRA was
compared with three other methods to demonstrate its superi-
ority. As shown in Figure 2(a), the best-response-based scheme
converges in only three iterations, whereas the gradient-like
algorithms require 200 or more iterations to achieve a compa-
rable performance. Clearly, the proposed method has a higher
efficiency for market clearing, which is crucial for the practical
engineering implementation of P2P transactions.

In addition, the resilience of the solution method was verified
when confronting communication failures. 𝜖 is the probability
of packet dropout. If a packet dropout occurs, the player per-
forms a local update using the most recent information. As
shown in Figure 2(b), the ABRA only needs 7 iterations to reach
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FENG ET AL. 5

FIGURE 2 Numerical results: (a) comparison of the iteration process for
the four methods; (b) robust performance with different probabilities of packet
dropout.

FIGURE 3 Robust performance: (a) with different time delays; (b) with
different levels of data errors.

the NE even though 𝜖 increases to 0.3, which is sufficiently large
in practical engineering scenarios.

To validate its practicality, we tested our method in the fol-
lowing two scenarios: delayed input and data errors, which are
common in practical engineering cases. δ denotes the number of
delayed iterations. Specifically, the player would have to perform
the local update with the information in the past δ-th iteration.
As shown in Figure 3(b), the ABRA monotonically reaches the
NE even though δ increases to 8. In addition, Gaussian noise
with the probability of ξ is presumably added to the information
exchanged among the players to simulate the data errors. The
mean value of the noise was set to 10% of the truth value. As
shown in Figure 3(b), the ABRA could still reach the NE even
though the probability ξ increases to 0.3, which is sufficiently
large in practical scenarios.

Meanwhile, the total revenue of the proposed game model
shares the same value as the social optimum; therefore, the
price of anarchy (PoA) is 1, which shows that the proposed
method achieves the same efficiency as the centralized method
that maximizes social welfare.

5 CONCLUSION AND FUTURE WORK

A communication-resilient and convergence-fast P2P energy
trading scheme was established based on the NEP model. A
sufficient condition was developed for the unique solution of
the NEP, and insights into its economic underpinnings pro-
vided using the cobweb model. To derive the solution, an

asynchronous best-response algorithm was employed, and a
subsequent analysis of its convergence was presented. The
case study results demonstrate the high convergence speed and
exceptional resilience of ABRA. In particular, the NEP model
exhibited no loss of efficiency. More advanced ARBA-enabled
market designs which can be robust against the parameters in
the player’s model should be studied in the future.
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APPENDIX

Proof of Lemma 2

Without loss of generality, we set 𝝋i = I for each player; I is an
identity matrix. Obviously, ΥF is the comparison matrix of the
Hessian matrix of F. ΥF as a P-matrix is equivalent to ΥF as a
non-singular M-matrix. Therefore, the sufficient condition for
Lemma 2 can be determined by generalizing the notion of strict
diagonal dominance, which is stated as follows: the matrix ΥF

is a P-matrix if an entry-wise positive vector w = (wi )
I
i=1 exists,

such that,

1
wi

∑
j≠i

w j

𝜃max
i j

𝛼min
i

< 1, ∀i = 1, … , I (14)

Specifically, it can be rewritten as follows:

wI < aiwi , ∀i = 1, … , I − 1 and
∑

j≠I
w j < wI𝛽

(
I−1∑
i = 1

1∕ãi

)2

(15)
Next, we must prove whether w exists to satisfy the

inequalities in Equation (13). We further assume that
a1 w1 = ,… , = aI−1 wI−1 and we only need to prove

𝛽(
∑I−1

i = 1 1∕ãi )
2
∕
∑I−1

i = 1 wi > (I − 1)∕
∑I−1

i = 1 aiwi . Based on
the fact that ãi ≈ ai and 𝛽 > maxi∈{ai}∕(I − 1), we have

𝛽

(
I−1∑
i = 1

1∕ãi

)2/
I−1∑
i = 1

wi

>maxi∈ {ai} ×

(
I−1∑
i = 1

1∕ãi

)2

∕ (I − 1) ×
I−1∑
i = 1

wi

>maxi∈ {ai } ×
[
(I − 1) mini∈ {1∕ãi }]

2
∕ (I − 1) ×

I−1∑
i = 1

wi

≈ (I − 1) ∕maxi∈ {ai} ×

I−1∑
i = 1

wi > (I − 1) ∕
I−1∑
i = 1

aiwi (16)

which provides conclusive evidence. In addition, a real symmet-
rical matrix is positive definite only if it belongs to P-matrices.
Therefore, Lemma 2 can also be proved by deriving the critical
conditions, making ΥF positive definite.

Proof of Lemma 4

x(0) ∈  is fixed and the sequence {x(n)} generated by the best
response algorithm x(n) = 𝚪F x(n−1) considered. According to
the properties of block contraction, we have

‖x(n+1) − x(n)‖ ≤ ‖𝚪F‖‖x(n) − x(n−1)‖ (17)

for all n ≥ 1, which implies

‖x(n+1) − x(n)‖ ≤ ‖𝚪F‖n‖x(1) − x(0)‖ (18)

It follows that for each n ≥ 1 and m ≥ 1, we have

‖x(n+m) − x(n)‖ ≤

m∑
j = 1

‖x(n+ j ) − x(n+ j−1) − ‖
≤ ‖𝚪F‖n

(
1 + ‖𝚪F‖ + ‖𝚪F‖2 +⋯+ ‖𝚪F‖m−1

) ‖x(1) − x(0)‖
≤

‖𝚪F‖n

1 − ‖𝚪F‖ ‖‖x(1) − x(0)‖‖ (19)

Therefore, {x(n)} is a Cauchy sequence that converges to a
certain limit. Define the x(n+m) as the NE of G, and the desired
result is obtained.
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