NO 在分子筛 ZSM-5 催化剂上催化氧化动力学研究

李玉芳,刘华彦,黄海凤,卢晗锋,陈银飞^{*}(浙江工业大学化学工程与材料学院,绿色化学合成技术国家重点实验 室培育基地,浙江 杭州 310014)

摘要:研究了常温下 NO 在疏水型高硅分子筛 ZSM-5 上的氧化反应.结果发现,NO 在分子筛 ZSM-5 表面氧化的同时,伴随着明显的吸附 过程,待吸附饱和后释放出 NO₂.相比于活性炭,高硅分子筛 ZSM-5 上 NO 氧化受水汽影响较小,303K 饱和湿气下,NO 稳态转化率只比干气 下降低 6%.在排除内、外扩散影响的条件下,于等温积分反应器中研究了稳定阶段 NO 氧化的本征动力学,根据不同温度下 *X~W/F*_{A0} 及 NO 分压数据,计算了反应速率,建立简化的动力学模型并获得了反应速率方程,结果表明其拟合复相关系数较高.

关键词:分子筛 ZSM-5;疏水性;常温;NO 氧化;本征动力学

中图分类号: X701.1; TQ 013.2 文献标识码: A 文章编号: 1000-6923(2010)02-0161-06

Performance and intrinsic kinetics of molecular sieves ZSM-5 in NO catalytic oxidation. LI Yu-fang, LIU Hua-yan, HUANG Hai-feng, LU Han-feng, CHEN Yin-fei^{*} (State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, College of Chemical Engineering and Materials Science, Zhejiang University of Technology, Hangzhou 310014, China). *China Environmental Science*, 2010,30(2): 161~166

Abstract: The oxidation of NO catalyzed by silicon-rich molecular sieves ZSM-5 with strong hydrophobicity at ambient temperature was investigated. The experimental results showed that NO was oxidized to NO₂, which adsorbed on ZSM-5 surface and desorbed after saturation. Water vapor concentration in the NO_x waste gas did not have significant effect on NO oxidation using ZSM-5, as opposed to that using activated carbon. The steady-state NO conversion in saturated wet gas decreased slightly by 6% compared to that in the dry gas at 303K over ZSM-5 due to its strong hydrophobicity. The intrinsic kinetics of NO oxidation was studied in an isothermal integral fixed-bed reactor, assuming that the effects of internal and external diffusion in the ZSM-5 catalyst pellet were negligible. The *X*~*W*/*F*_{A0} values and NO partial pressure at different temperatures were measured to evaluate the reaction rates. A simplified exponential kinetic model was established. The NO oxidation kinetic equation was determined by non-linear regression, and it fitted the experimental data well.

Key words: molecular sieves ZSM-5; ambient temperature; hydrophobic; NO oxidation; intrinsic kinetics

氮氧化物(NO_x)是造成酸雨、光化学烟雾、破坏臭氧层的主要物质之一,其中 NO 是主要污染物,占 NO_x 总量 90%以上^[1].NO 的难溶性给液体吸收法脱除 NO_x 带来极大挑战.因此常采用氧化法将部分 NO 氧化成 NO₂,以便脱除(NO₂/NO_x= 50%~60%为最佳脱除率所需值)^[2-3].一种是采用氧化剂如 NaClO₂^[4]、H₂O₂^[5]、ClO₂^[6]、O₃^[7]等的直接氧化,由于需加入较为昂贵的、且为纯消耗的氧化剂,处理成本较高.另外一种是以废气中的O₂ 为氧化剂,借助于催化剂作用的催化氧化^[1].从经济的角度来看,后者是一种更具发展前景的NO 消除技术.硝酸制造厂、精细化工厂和制药厂

等排放的 NO_x 工业废气具有低温、水汽含量高的特点,要求 NO 氧化催化剂必须兼具低温活性和抗水汽性.活性炭及活性炭纤维可以实现常温下对 NO 的催化氧化^[8-10],但这类催化剂的抗水汽性能极差,从而影响工业化应用.Guo 等^[8]研究了活性炭及活性炭纤维的抗水汽性,结果表明,30℃下它们分别在相对湿度为 10%和 20%时就完全失去活性.目前,低温 NO 氧化催化剂抗水汽性能差的问题尚未得到解决.利用分子筛硅铝

```
收稿日期: 2009-06-11
基金项目:浙江省科技厅项目(2007C23034)
```

至显现日: 初江百科议门项百(2007C25054

```
NO 消除技术.硝酸制造厂、精细化工厂和制药厂 * 责任作者, 教授, yfchen@zjut.edu.cn
```

(C)1994-2022 China Academic Journal Electronic Publishing House. All rights reserved. http://www.cnki.net

比可调而获得较好疏水性的特点,本研究选用高 硅分子筛 ZSM-5 代替活性炭作为常温下 NO 氧 化的催化剂,研究了分子筛 ZSM-5 催化氧化 NO 的活性和抗水汽性,并在此基础上获得了稳定阶 段 NO 氧化反应本征动力学,以期为工业反应器 设计提供基础数据.

1 材料与方法

1.1 材料

H型和 Na 型 ZSM-5 (SiO₂/Al₂O₃=300)高硅 分子筛购自上海卓悦化工有限公司.将上述分 子筛原粉在 110℃干燥 2h,再于 500℃下焙烧 3h, 以去除残留的分子筛模板剂及表面吸附的水分 等杂质.经压片、碾碎、过筛,得到粒径为 0.6~0.9mm (30~20 目)颗粒状分子筛,用作后续研 究的 NO 氧化催化剂.

1.2 实验装置与流程

图 1 NO 催化氧化试验装置示意 Fig.1 Experimental apparatus for NO catalytic oxidation 1.质量流量计; 2.空气泵; 3.转子流量计; 4.干燥管; 5.饱和增湿装置; 6.固定床反应器; 7.取样口; 8.烟气分析仪

测定催化剂的活性在如图 1 所示的装置中 进行,反应器是直径 18mm、长 140mm 的石英玻 璃管,外壁是加热保温装置.模拟废气中 NO 用 N₂作为载气,O₂来自空气.质量流量计计量 N₂、 NO 流量,转子流量计控制空气流量.空气分两路: 一路通过干燥剂后变成干气,另一路进入饱和 增湿装置以载带饱和水汽.调配干、湿空气的流 量可得到不同湿度的模拟废气. NO、NO₂进出 口的浓度由烟气分析仪(Testo-XL 350 型)每隔 一定时间进行多组分在线、定量分析,二者浓度 之和定义为 NO_x浓度.

反应条件:NO、NO₂进口浓度分别为 0.05%、 0.002%,O₂浓度为 20.7%,催化剂装填量 4.3~8.6g, 气体总流量为 1~5L/min,反应温度为 293~333K, 反应在常压下进行.催化剂活性评价结果用 NO 稳态转化率来衡量.

$$X = \frac{C_{\rm NO,in} - C_{\rm NO,out}}{C_{\rm NO,in}} \tag{1}$$

式中:X为稳定状态下的NO转化率; C_{NO,in},C_{NO,out}分别为反应器进、出口NO物质的质量分数.

2 结果与讨论

2.1 试验条件确定

初步实验测定结果表明,NO、NO₂进口浓度 分别为 0.05%、0.002%,催化剂装填量 8.6g,气体 总流量为 5L/min,反应温度为 313K 时,出口 NO_x 浓度为 0.0517%(NO、NO₂ 分别为 0.031%、 0.0207%),进出口 NO_x浓度相对误差 0.58%,说明 系统中 NO_x平衡,可以只考虑 NO 氧化生成 NO₂ 的反应.

2.2 分子筛 ZSM-5 催化氧化 NO 性能

图 2 中 O₂浓度为 20.7%,空时为 0.25s,反应 温度 293K.由图 2(a)可见,在 H-ZSM-5 上 NO 的 氧化反应初期,出口处就有 NO 出现,但 NO 出口 浓度低于进口浓度,也没有 NO₂释放,说明 NO 被 直接吸附或者氧化为 NO₂后被吸附.随着反应时 间增加,5min 后 NO₂ 浓度开始快速上升,与此同 时,NO 浓度稍有下降,经过 10min 后二者都保持 稳定状态.由图 2(b)可见,Na-ZSM-5 上 NO 的氧 化反应过程与 H-ZSM-5 上的变化趋势一致.反 应初期都无 NO₂释放,出现明显的吸附过程,反应 进行 55min 后才开始有大量 NO₂释放,同时出口 NO 浓度骤减,随后二者达到稳定状态.由此可 见,NO 在分子筛 ZSM-5 表面氧化的同时,伴随着 明显的吸附过程,待吸附饱和后释放出 NO₂,最终 达到反应动态平衡.

增湿装置以载带饱和水汽.调配干、湿空气的流 NO 在 ZSM-5 上的氧化过程与活性炭(AC) 量可得到不同湿度的模拟废气.NO、NO2 进出 及活性炭纤维(ACF)上的氧化^[8-10]过程极为相 口的浓度由烟气分析仪(Testo-XL 350 型)每隔 似.针对 NO 氧化反应前期的吸附过程,一般认 一定时间进行多组分在线、定量分析,二者浓度 为是 NO 首先氧化成 NO2,然后 NO2 再吸附在催 (C)1994-2022 China Academic Journal Electronic Publishing House. All rights reserved. http://www.cnki.net

化剂表面,待吸附饱和后释放出来.Mochida 等^[9] 对 NO 和 O₂在 ACF 上吸附过程采用程序升温 脱附(TPD)研究,结果表明,NO 首先吸附在 ACF 上,随即氧化成 NO₂,然后二者共吸附在 ACF 上, 随着时间的增加,NO2 占据主要吸附位,待 NO2 吸附饱和后开始解吸.Adapa等^[10]对 NO 氧化生 成 NO₂ 的反应机理提出了进一步的解释,认为 NO₂吸附在 ACF 上可形成 NO₃或 NO-NO₃中 间体,NO与NO3继续反应生成NO2.根据ZSM-5 分子筛和 ACF 对 NO 氧化的相似行为,上述二种 机理应该也适用于 ZSM-5 分子筛表面吸附-反 应行为.

2.3 分子筛 ZSM-5 的抗水汽性能

为考察催化剂的疏水性能,本实验还采用文 献[2]中所用催化剂 AC 进行了对比.图 3 为 303K 下 NO 稳态转化率随相对湿度的变化曲线.由图 3 可见,随着相对湿度的增加,分子筛 ZSM-5 上 NO 转化率缓慢下降,在相对湿度由 0 增加至 100%时,NO转化率仅下降6%.而在AC上,NO转

化率随着相对湿度的增加迅速下降,当相对湿度 为 50%时,转化率只有 7%.很明显,相比于 AC,分 子筛ZSM-5表现出了优良的抗水汽性能,具有良 好的工业化应用前景.

图 3 NO 转化率随相对湿度的变化

Fig.3 Effects of relative humidity on steady-state conversion of NO oxidation at 303K

2.4 催化剂的结构特性对 NO 氧化的影响

图2显示,H-ZSM-5和Na-ZSM-5二种分子 筛催化剂上 NO 转化率虽然相同,但 NO2的穿透 时间存在明显差异.再与 AC 催化剂进行比较,发 现 NO₂ 的穿透时间和催化剂的微孔比表面积和 孔容有关.如表1所示,H-ZSM-5、Na-ZSM-5和 AC 这 3 种催化剂的微孔比表面积和孔容依次增 加,从而导致 NO2 在它们表面上的吸附穿透时间 也依次增加,实验测得其分别为 5min、55min 和 300min.

Table 1 Porous structure parameters of H–ZSM–5, Na-ZSM-5 and AC catalysts

虚化刻	比表面积	微孔表面积	中孔表面积	微孔孔容	
催化加	(m^2/g)	(m ² /g)	(m^2/g)	(cm^3/g)	
H-ZSM-5	358.2	166.3	191.9	0.073	
Na-ZSM-5	383.7	309.5	74.2	0.125	
AC	899.7	684.7	215	0.357	

图 3 显示,相对湿度为 0,即干气下 ZSM-5 催化氧化 NO 活性要低于 AC.这可能是因为 AC 具有较大的比表面积的缘故,其总比表面积达 899.7m²/g,而 H-ZSM-5 和 Na-ZSM-5 的比表面 (C)1994-2022 China Academic Journal Electronic Publishing House. All rights reserved. http://www.cnki.net

163

积分别只有358.2和383.7m²/g,因这二种分子筛 比表面积接近,所以导致图 2 中两种催化剂上 NO转化率也都为62%.因此,催化剂的总比表面 积是决定催化剂活性的主要因素.另外,表面含 氧基团也是催化剂活性的重要因素^[11-12],AC 表 面具有较丰富的含氧基团(-OH,-COOH,-CO 等),而分子筛 ZSM-5 上只有一种具有 NO 吸附活性位的含氧基团(-OH)^[13],所以后者比 前者的活性位少,在干气下对 NO 催化氧化活性 不如前者.

有研究表明,AC 催化剂的亲疏水性与表面 含氧基团有关^[14],AC 具有丰富的表面含氧基团, 导致其对极性水分子的强吸附作用,抑制了 NO 氧化. Mochida等^[15]报道,只有去除表面的含氧基 团才可以增加其疏水性.而对于分子筛ZSM-5来 说,影响其亲疏水性能的是硅铝比的大小.硅铝比 越高,疏水性能越好.对于高硅铝比的 ZSM-5,由 于 Si 原子代替了 Al 原子,其骨架中大部分是 Si 与O原子,符合于最简单式SiO2,微孔表面极性较 弱,表现出疏水特性[16].

2.5 NO氧化反应本征动力学研究

本征动力学将为工业化 NO 催化氧化反应 器的设计提供基础. 另外,NO 在分子筛上氧化 受温度影响显著,温度越低越有利于 NO 氧化^[17], 这同 AC 上 NO 氧化变化规律一致,因此很多研 究者认为AC对NO氧化只是起到吸附富集的作 用,为物理过程^[18].NO 氧化反应本征动力学还将 为进一步探讨分子筛 ZSM-5 上 NO 氧化反应机 理提供相关信息.

2.5.1 内、外扩散影响的排除 根据文献[19] 中提供的方法,首先排除内、外扩散影响.实验分 别取催化剂质量 W1=4.3g、W2=8.6g,在同一温 度、相同进料组成下测得不同 NO 进料流量(FA0) 下稳定阶段的 NO 转化率(X),作 X~W/FA0 关系图 (图 4).结果显示二条曲线基本重合,可以认为在 这一流速区域,反应不受外扩散影响.

为了检验内扩散影响是否排除,在恒定 W/FA0条件下测得不同催化剂粒径dp下的NO转 化率,结果如图 5 所示.当粒度 dp>0.9mm 时,NO 转化率开始稍有下降,表明当 d_n<0.9mm 时,才可 (C)1994-2022 China Academic Journal Electronic Publishing House. All rights reserved. http://www.cnki.net

以认为内扩散已排除.但催化剂粒径太小.会造成 床层阻力大,所以选择粒度范围为 0.6~0.9mm,即 30~20 目.

图 4 NO 转化率随不同进料流量的变化

Fig.4 Experiment of eliminating external diffusion

图 5 NO 转化率随不同崔化剂粒径的变化 Fig.5 Experiment of eliminating inside pore diffusion

根据内、外扩散影响排除试验获得的条件范 围,固定催化剂装填量 W=8.6g,设定 NO进口浓度 0.05%,NO2浓度为0.002%,O2浓度为20.7%,改变 NO进口摩尔流率 FA0,分别在 313,323,333K 下测 得出口 NO 稳态转化率 X;利用 Polymath 对 X~W/FA0 曲线进行多项式拟合.根据等温积分反 应器设计方程:

$$-r_{\rm A} = \mathrm{d}X_{\rm A} / \mathrm{d}(W / F_{\rm A0}) \tag{2}$$

对拟合的方程进行微分,求得反应速率-r_A;借助 物料平衡,得到当前条件下反应组分的分压 P_{NO} 和 P_{NO},,上述计算数据列于表 2 中.

动力学方程模型 文献[20]中指出 NO 2.5.2 氧化反应在低温下(小于200℃)进行时,反应平衡

常数非常大,可认为是不可逆反应,因此建立反应

模型为:

 $-r_{\rm A} = k p_{\rm NO}^{\alpha} p_{\rm O_2}^{\beta} \tag{3}$

$$-r_{\rm A} = k_0 {\rm e}^{-Ea/RT} p_{\rm NO}^{\alpha} \tag{4}$$

	表 2	本征动力学反应速率数据
Table 2	The	reaction rate data of intrinsic kinetics

序号	Т	W/F_{A0}	X	$P_{ m NO}$	$P_{ m NO_2}$	$-r_{\rm A}$	$-r_{\rm A}'$	R
	(K)	$(\times 10^3 g \cdot h/mol)$	(%)	(Pa)	(Pa)	$[\times 10^{-5} \text{ mol/(g·h)}]$	$[\times 10^{-5} \text{mol}/(g \cdot h)]$	(%)
1	313	1.369	36.38	31.403	21.010	8.46	8.58	1.47
2	313	1.706	40.67	30.289	22.367	8.05	7.97	0.913
3	313	2.275	45.11	28.972	23.806	7.36	7.29	0.961
4	313	3.413	51.39	25.325	27.402	5.97	5.54	7.20
5	313	6.825	65.35	16.715	35.769	1.83	2.39	30.3
6	323	1.369	21.64	37.988	14.496	7.65	7.77	1.51
7	323	1.706	25.75	37.278	15.063	7.35	7.47	1.62
8	323	2.275	29.82	35.759	17.424	6.86	6.87	1.76
9	323	3.413	35.73	32.619	20.392	5.86	5.70	2.74
10	323	6.825	51.29	24.818	28.334	2.87	3.27	13.9
11	333	1.369	15.90	42.850	9.573	6.07	6.28	3.43
12	333	1.706	18.54	41.837	11.305	5.90	5.98	1.292
13	333	2.275	22.12	40.014	12.632	5.62	5.46	2.87
14	333	3.413	27.33	37.988	14.992	5.06	4.92	2.93
15	333	6.825	42.14	29.478	23.542	3.39	2.94	13.2

2.5.3 模型参数确定 联立式(2)和式(4),运用 Polymath 软件分别将表 2 中 15 组数据- r_A , T 和 P_{NO} 值整体回归速率方程,得模型方程参数.由 动力学方程计算的反应速率- r_A '以及相对误差 R 也列于表 2 中,所得速率方程为:

 $-r_{A} = 1.185 \times 10^{-15} e^{40880/RT} p_{NO}^{2.03}$ (5) 复相关系数 ρ^{2} 为 0.980,拟合度较高.所得活化能 为-40.88kJ/mol,相比 NO 均相氧化反应(活化能 为-6~-7kJ/mol)^[20],远远降低了其活化能.说明 ZSM-5 确实起到了催化作用.NO 反应级数为 2.03,近似为二级.

3 结论

3.1 在常温下,NO 进口浓度为 0.05%、O₂ 为 20.7%时考察了分子筛 ZSM-5 催化氧化 NO 的 性能.NO 在分子筛 ZSM-5 表面氧化的同时,伴随 着明显的吸附过程,待吸附饱和后释放出 NO₂,最 终反应达到动态平衡.

较小,303K饱和湿气下,NO稳态转化率只比干气条件下降 6%,其疏水性与其硅铝比有关.

3.3 催化剂对 NO 催化氧化活性与其比表面积 和表面含氧基团,对 NO₂吸附穿透时间与微孔比 表面积和微孔体积有关.

3.4 根据本征动力学实验所得到的稳定阶段 NO 氧化反应速率方程为:

 $-r_{\rm A} = 1.185 \times 10^{-15} \,{\rm e}^{40880/RT} \,p_{\rm NO}^{2.03}$

此 NO 氧化动力学适用于 O₂浓度远远大于 NO 浓度时,低温下 NO 在分子筛 ZSM-5 上的氧化 反应.

参考文献:

- [1] 童志权,莫建红.催化氧化法去除烟气中 NO_x 研究进展 [J]. 化 工环保, 2007,27(3):193-198.
- [2] 袁从慧,刘华彦,卢晗锋,等.催化氧化-还原吸收法脱除工业含湿 废气中 NO_x[J].环境工程学报,2008,2(9):1207-1212.
- [3] 任晓莉,张雪梅.碱液吸收法治理含 NO_x工艺尾气实验研究 [J].
 化学工程, 2006,34(9):63-66.
- **3.2** 相比于 AC,ZSM-5 上 NO 氧化受水汽影响 [4] Hsu H, Lee C, Chou K. Absorption of NO by NaClO₂ solution: (C)1994-2022 China Academic Journal Electronic Publishing House. All rights reserved. http://www.cnki.net

Performance characteristics [J]. Chem. Eng. Commun., 1998, 170(1):67-81.

- [5] Thomas D, Vanderschuren J. Effect of temperature on NO_x absorption into nitric acid solutions containing hydrogen peroxide
 [J]. Ind. Eng. Chem. Res., 1998,37(11):4418-4423.
- [6] Deshwal B R, Jin D S, Lee S H, et al. Removal of NO from flue gas by aqueous chlorine-dioxide scrubbing solution in a lab-scale bubbling reactor [J]. Journal of Hazardous Materials, 2008,150: 649–655.
- [7] Young S M. Absorption–reduction technique assisted by ozone injection and sodium sulfide for NO_x removal from exhaust gas
 [J]. Chemical Engineering Journal, 2006,118:63–67.
- [8] Guo Z C, Xie Y S. Catalytic oxidation of NO to NO₂ on activated carbon [J]. Energy Conversion and Management, 2001,42:2005– 2018.
- [9] Mochida I, Shirahama N. NO oxidation over activated carbon fiber (ACF). Part 1. Extended kinetics over a pitch based ACF of very large surface area [J]. Fuel, 2000,79:1713–1723.
- [10] Adapa S, Gaur V. Catalytic oxidation of NO by activated carbon fiber (ACF) [J]. Chemical Engineering Journal, 2006,116:25–37.
- [11] Boehm H P. Surface oxides on carbon and their analysis: A critical assessment [J]. Carbon, 2002,40(2):45–49.
- [12] Dastgheib S A, Karanfil T. Adsorption of oxygen by heat-treated granular and fibrous activated carbons [J]. Journal of Colloid and

Interface Science, 2004,274(1):1-8.

- [13] 张文祥,贾明君,吴通好,等.金属离子交换分子筛的 NO 吸附性
 能 [J]. 高等学校化学学报, 1997,18(12):1999-2003.
- [14] Ashleigh J F, Yaprak U K, Mark T, et al. Role of surface functional groups in the adsorption kinetics of water vapor on microporous activated carbons [J]. Physical Chemistry, 2007,111: 8349-8359.
- [15] Mochida I, Kisamori S, Hironaka M, et al. Oxidation of NO into NO₂ over active carbon fibers [J]. Energy and Fuels, 1994,8: 1341–1344.
- [16] 黄 燕.疏水性沸石分子筛的及其在二氧化碳控制技术中的应用 [J]. 应用化工, 2002,31(3):12-15.
- [17] 李玉芳,刘华彦,黄海凤,等.疏水型 H-ZSM-5 分子筛上 NO 氧化 反应研究 [J], 中国环境科学, 2009,29(5):469-473.
- [18] Brandin J G M, Andersson L H, Odenbrand C U I. Catalytic oxidation of NO to NO₂ over a H-Mordenite Catalyst [J]. Acta Chemica Scandinavica, 1990,44: 784–788.
- [19] 陈甘棠.化学反应工程 [M]. 北京:化学工业出版社, 1981.
- [20] 童志权.工业废气净化与应用 [M]. 北京:化学工业出版社, 2001.

作者简介: 李玉芳(1983-),女,安徽蚌埠人,浙江工业大学工程与材 料学院硕士研究生,主要从事 NO 催化氧化及氮氧化物废气处理研 究.发表论文 3 篇.

《中国环境科学》荣获第六届中国科协期刊优秀学术论文奖

《中国环境科学》2007 年第 5 期发表的程书波等人的文章"上海市地表灰尘中 PAHs 的来源辨析"荣获 2008 年中国科协颁发的"第六届中国科协期刊优秀学术论文二等奖";2007 年第 1 期发表的邵立明等人的文章"生物反 应器填埋场初期的重金属释放行为"及 2007 年第 2 期发表的罗专溪等人的文章"三峡水库支流回水河段氮磷负荷 与干流的逆向影响"荣获"第六届中国科协期刊优秀学术论文三等奖".

《中国环境科学》编辑部

30卷