

A mechanistic study of the sulfur tolerance of Cu–V mixed oxides in toluene catalytic combustion

Xinhua Zhang¹ \cdot Zhiying Pei¹ \cdot Tingting Wu¹ \cdot Hanfeng Lu² \cdot Haifeng Huang¹

Received: 7 May 2015/Accepted: 22 July 2015/Published online: 30 July 2015 © Akadémiai Kiadó, Budapest, Hungary 2015

Abstract A number of copper and vanadium mixed oxides were synthesized using the sol-gel method and their sulfur tolerance was studied in toluene combustion (used as a model reaction) in the presence of SO₂. The results revealed that the activity and thio-tolerance ability of Cu–V mixed oxides were significantly related to their compositions. The Cu₁V₆ sample (1 and 6 are the atomic ratio of copper and vanadium in the mixed oxide) showed the best activity and thio-tolerance ability as compared with the other samples used in the study. The high performance of Cu₁V₆ sample could be related to the formation of CuV₂O₆ that restrained the formation of sulfate species, high specific surface area and good reducibility as characterized by XRD, FT-IR, N₂-physical adsorption/desorption and H₂-TPR.

Keywords Copper oxide \cdot Vanadium oxide \cdot Toluene \cdot Catalytic combustion \cdot Thio-tolerance \cdot SO_2

Introduction

Catalytic oxidation is identified as the most efficient, energy-saving and environmentally friendly technique to abate volatile organic compound (VOC) emissions among many end-of-pipe abatement techniques [1, 2]. However, the gases emitted from some industries (e.g., soap factories, refineries, wastewater treatment plants, geothermal power plants, meat processing plants and some chemical plants) contain a certain amount of sulfur-containing compounds [3]. These compounds in the feed

Haifeng Huang hhf66@zjut.edu.cn

¹ College of Biological and Environmental Technology, Zhejiang University of Technology, Hangzhou 310032, People's Republic of China

² College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310032, People's Republic of China

gas can be easily transformed into SO_2 under the conditions of catalytic combustion [4], which usually results in catalyst poisoning [1, 5].

Generally, supported noble metal catalysts show relatively high activity in the catalytic combustion of VOCs at low temperatures [6]. However, these catalysts are easily poisoned in the presence of SO₂ due to the formation of stable sulfate species on their surfaces [6–8]. Therefore, many efforts have been made to modify the formulations of noble catalysts to improve their thio-tolerance abilities. For example, using Pt–Pd [6, 9], Ru–Pt [10], Rh–Pt [10, 11], Ir–Pt [6], Pd–Rh [11], Pd–Au [12] bimetal materials, or supporting noble metals on Al₂O₃ [8, 9, 13–18], ZrO₂ [6, 10, 15], SiO₂ [12, 13, 15, 19], CeO₂ [13, 18], TiO₂ [15, 19], SBA-15 [20], Co₃O₄ [21, 22] and even using the mixed oxide supports [7, 11, 14, 23, 24]. Although these modifications have some positive effects on the thio-tolerance ability of noble metal catalysts, the results are still not satisfactory.

Although metal oxide catalysts are less active than supported noble metal catalysts in VOC combustion at low temperatures, they work better in the presence of SO₂ [4, 25, 26]. Some mixed metal oxide catalysts such as SnO₂–Cr₂O₃ [27], SnO₂–In₂O₃ [25], LaMn_{1-x}Mg_xO₃.yMgO [28] and LaCr_{0.5-x}Mn_xMg_{0.5}O₃.yMgO [29, 30] are reported to have good thio-tolerance abilities in hydrocarbon catalytic combustion in the presence of SO₂. Copper-based oxide catalyst usually shows high activity in VOC combustion [31–33]. However, CuO easily reacts with SO₂ to form sulfate species on the catalyst surface and in turn the copper sulfate occupies the catalytic reactive sites [34]. The problem of thio-tolerance ability of the copper-based catalyst in sulfur-containing VOC combustion still needs to be resolved. Vanadium-based catalysts usually show good thermal stability and have been broadly used in industrial sulfuric production process [35]. Therefore, it is assumed that the thio-tolerance ability of Cu–V mixed oxides would be superior to the single component ones in VOC combustion in the presence of SO₂.

In the present work, a series of copper-vanadium mixed oxide catalysts were prepared by sol–gel method and used in toluene combustion in the presence of SO₂. Our aim is to study the relationship between catalytic activity, thio-tolerance ability and textural properties of the prepared catalysts.

Catalysts preparation

Cu_xV_y mixed oxide catalysts (x and y represent the atomic ratio of copper and vanadium in the samples) were prepared by sol–gel method using Cu(NO₃)₂·3H₂O, NH₄VO₃ and citric acid as precursors. In a typical synthesis process, Cu(NO₃)₂·3H₂O and NH₄VO₃ were dissolved in deionized water to form 1.0 M homogenous solution. 1.0 M citric acid was added slowly to the above mentioned solution with continuous stirring at 70 °C in a water bath until a sticky gel is formed. The gel was dried at 110 °C for 10 h, and then calcined in air at 450 °C for 3 h to remove the organic compounds. These samples were denoted as Cu_xV_y (where *x*: *y* = 1:6, 1:1, and 6:1). For comparison, CuO_x and VO_x were also prepared by using the same method as mentioned above.

Catalyst characterization

XRD analysis

Powder X-ray diffraction patterns (XRD) of samples were recorded on an X'Pert Pro powder diffractometer using Cu K_{α} radiation (40 kV and 50 mA) and nickel filter. The diffractograms were recorded within 2 θ range of 20°–80° with a 2 θ step speed of 4°/min, and jade 5.0 software was used to analyze the phase compositions of as-prepared samples.

N₂-physical adsorption and desorption

N₂-physical adsorption/desorption isotherms were measured at -196 °C on Micromeritics ASAP 2020 C instrument. The samples were outgassed at 250 °C for 3 h before measurement, and the specific surface area were calculated using two parameters BET equation.

H_2 -TPR analysis

H₂ programmed-temperature reduction (H₂-TPR) was investigated on FINE SORB-3010 instrument by heating 100 mg samples in H₂/Ar mixture gas (H₂ 8 sccm and Ar 32 sccm) with the heating rate of 10 °C/min from 50 °C to 900 °C. The hydrogen consumption was monitored by thermo-conductivity detector (TCD). All the samples were heated in Ar atmosphere at 400 °C for 2 h and then cooled down to 50 °C in the same atmosphere before measurement.

Catalytic activity test

Catalytic oxidation experiments were performed in fixed bed quartz glass tubular reactor (6 mm inner diameter) at ambient pressure. 0.15 g catalyst was placed in the middle of the reactor and diluted with 1.5 g quartz sand. Each end of the reactor bed was packed with quartz wool to prevent the catalyst from draining off. Simulated toluene effluent was generated by bubbling the formulated air through the saturator in ice bath, and air as balance gas to give the desirable gas hourly space velocity (GHSV) in the catalytic reactor bed. The feed toluene concentration was kept at constant at 8000 ppm with a corresponding total GHSV of 50,000 mL g⁻¹ h⁻¹. SO₂ was added in the feed gas to investigate the catalysts thio-tolerance ability. All gas flow was controlled by a mass flow controller (MFC, Beijing Seven-star Electronics Co., Ltd). The off-gas was analyzed by an online gas chromatograph (Agilent 6890 N) equipped with a FID detector. Toluene conversion without catalyst was below 3 percent in all experiments.

Results and discussion

Catalytic activity results

Light-off curves of Cu–V mixed oxides in toluene combustion in the absence of SO₂ are shown in Fig. 1. The Cu₁V₆ sample showed the highest activity among all investigated samples, where T_{50} (temperature with 50 % toluene conversion) is only 305 °C, about 100 °C lower than that of VO_x sample (T_{50} is 409 °C). Based on T_{50} , toluene combustion activity of the tested samples was Cu₁V₆ > Cu₆V₁ > Cu₁V₁ > CuO_x > VO_x. The main products of toluene combustion were CO₂ and H₂O, and apart from small amounts of CO detected in low-temperature range, no other secondary by-products were detected. At 400 °C, the selectivity to CO₂ was 100 % for all tested samples. Bulk copper oxide catalyst showed relatively high activity in toluene combustion, which is consistent with the reported literatures [36–38].

Toluene catalytic combustion is a common model reaction in VOC oxidation. Based on transition metal oxide catalysts, our work is compared with those recently reported in the literatures, and the results are listed in Table 1.

It is very difficult to compare the results of this work with those reported in the literature since the activity of the tested catalysts significantly depends on the operation conditions used. It is generally accepted that the light-off temperature (T_{50}) increases with the increase of feed concentration and GHSV. As listed in Table 1, the Cu₁V₆ sample tested at high toluene feed concentration and GHSV shows comparable activity as compared with the catalysts tested at relatively low feed concentration and GHSV, and even superior to the CuO/ γ -Al₂O₃ tested under lower toluene feed concentration and GHSV.

The activity of $Cu_x V_y$ samples in toluene catalytic combustion at 350 °C was also investigated in the presence of SO₂ and the results are shown in Fig. 2. All samples

Fig. 1 Light-off curves of $Cu_x V_y$ samples in toluene combustion in the absence of SO₂. Gas composition: 8000 ppm toluene, air balance; GHSV = 50,000 mL $g_{cat}^{-1} h^{-1}$

Refs.	Catalyst(s) used	Toluene content/ppm	GHSV	T ₅₀ / °C
[39]	Au-Co/SBA-15	1100	$50,000 \text{ h}^{-1}$	287
[40]	CuO	226	$60,000 \text{ h}^{-1}$	272
	5.0 % Au/CuO	226	$60,000 \text{ h}^{-1}$	264
[41]	CuO/γ-Al ₂ O ₃	1000	$21,000 \cdot h^{-1}$	313
[42]	9.5 %CuO/HCLT	1000	$15,000 h^{-1}$	330
[43]	Copper Vanadate	800	50,000 mL g ⁻¹ h ⁻¹	265
This work	Cu ₁ V ₆	8000	50,000 mL $g^{-1} h^{-1}$	305

 Table 1
 Toluene catalytic combustion activity reported in literatures with transition metal oxides

Fig. 2 Toluene conversion with time on stream in the presence of SO₂ at 350 °C. Test conditions: 8000 ppm toluene, 30 ppm SO₂, air balance, GHSV = 50,000 mL $g_{cat}^{-1} h^{-1}$

showed different levels of deactivation, depending on their compositions. Cu_1V_6 showed higher activity and stability as compared with the other tested samples. It is noteworthy that the CuO_x sample, which showed high toluene conversion in the absence of SO₂, undergoing severe deactivation in the presence of SO₂, the activity is lost about 68 % in a 180-min test. Similar results were also reported by Zhang et al. [34]. Using FT-IR and XRD characterizations, they found that the surface of active CuO_x is transformed into inactive $CuSO_4$. This might be the same reason for CuO_x deactivation observed in our work.

Since Cu_1V_6 sample shows good toluene combustion activity in the presence of SO₂. To further investigate the thermo-stability of Cu_1V_6 , this sample was calcined at different temperatures in air and tested in toluene combustion in the presence of SO₂. The results are shown in Fig. 3.

As shown in Fig. 3, all the samples showed good thio-tolerance ability in the presence of SO_2 , however, their toluene combustion activities were far away from

Fig. 3 Toluene conversion over Cu_1V_6 calcined at different temperatures. Testing conditions: 8000 ppm toluene, 30 ppm SO₂, air balance, GHSV = 50,000 mL g_{cat}^{-1} h⁻¹, 350 °C

identical. The sample calcined at 450 °C showed the best activity as compared with those calcined at the other temperatures.

XRD results

XRD patterns of the prepared copper-vanadium mixed oxides are shown in Fig. 4. The main diffractions of the pure copper oxide were indexed to tenorite phase (JCPDS PDF 48–1548). The VO_x sample showed the diffraction characteristics of V₂O₅ phase (JCPDS PDF 77–2418). Both Cu₃V₂O₈ phase (JCPDS PDF 74–1401)

Fig. 4 XRD patterns of the samples (1: CuO, 2: Cu₃V₂O₈, 3: Cu₂V₂O₇, 4: CuV₂O₆, 5: V₂O₅)

Fig. 5 XRD patterns of Cu_1V_6 sample calcined at different temperatures (**a**) and the used Cu_1V_6 sample (in toluene combustion in the presence of SO₂ at 350 °C) (**b**). (4-CuV₂O₆, 5-V₂O₅ and 6-Cu_{0.261} [V₂O₅])

and tenorite phase were observed in Cu_6V_1 sample. However, the Cu_1V_1 sample showed the main phase of $Cu_2V_2O_7$ (JCPDS PDF 73–1032). The Cu_1V_6 sample with high content of vanadium showed the main diffractions of CuV_2O_6 phase (JCPDS PDF 74–2117) and V_2O_5 phase. No characterization diffraction peaks corresponding to the tenorite phase could be observed, and this would be benefit for the thio-tolerance ability of the sample.

The XRD patterns of Cu_1V_6 sample calcined at different temperatures, as well as the sample (calcined at 450 °C) after used in toluene combustion in the presence of SO₂ were also investigated. The results are shown in Fig. 5. The V₂O₅ and CuV₂O₆ phases were well retained on all samples except the sample calcined at 500 °C, which showed main phases of V₂O₅ and Cu_{0.261}[V₂O₅] (ICSD# 79-0796). The phase compositions and corresponding crystal sizes are listed in Table 2. Compared with the sample calcined at 400 °C, the crystal size of V₂O₅ decreased at high calcination temperature. Interestingly, the sample calcined at 450 °C showed the smaller crystal sizes of V₂O₅ and CuV₂O₆ as compared with the other calcination temperature, which is consistent with the results of the biggest specific surface area observed in BET test (shown in Fig. 6). The phase compositions of Cu₁V₆ (calcined at 450 °C) after used in toluene combustion in the presence of SO₂ were well retained. No characteristic peaks corresponding to sulfates were observed, indicating there are no sulfates formed on the sample, or the amounts of sulfates are too little to be detected by the conventional XRD methods.

N₂-physical adsorption/desorption results

N₂-physical adsorption/desorption was carried out to investigate the specific surface area of Cu–V mixed oxides and the results are shown in Fig. 6. All specific surface areas of Cu–V mixed oxides was larger than those of CuO and V₂O₅. Cu₁V₆ sample showed the largest specific surface area as compared with the other investigated samples, which could be beneficial for the adsorption of reactant molecules on it.

Calcination temperature/ °C	Phase compositions	Crystal sizes/nm	
400	V ₂ O ₅	68.6 ^a	
	CuV ₂ O ₆	21.1 ^b	
450 (fresh)	V ₂ O ₅	55.8	
	CuV ₂ O ₆	21.2	
450 (used)	V ₂ O ₅	49.2	
	CuV ₂ O ₆	34.0	
500	V ₂ O ₅	64.7	
	$Cu_{0.261}[V_2O_5]$	67.3 ^c	
550	V ₂ O ₅	64.5	
	CuV ₂ O ₆	24.8	

Table 2 Phase compositions and corresponding crystal sizes of Cu_1V_6 sample calcined at different temperatures and the used Cu_1V_6 sample (in toluene combustion in the presence of SO₂ at 350 °C)

^{a, b, c} Calculated from the (0 0 1), (2 0 1) and (-1 1 1) diffractions of V_2O_5 , CuV_2O_6 and $Cu_{0.261}[V_2O_5]$, respectively

Fig. 6 Specific surface area and total hydrogen consumption of the investigated samples

H_2 -TPR results

H₂-TPR measurements of Cu–V mixed oxides were carried out and the results are shown in Figs. 6 and 7. The CuO_x sample showed one reduction peak at ~234.3 °C corresponding to the reduction of bulk CuO [31, 44]. Vanadium is usually reduced at 600–700 °C [45], the two reduction peaks of VO_x sample at 626.6 °C and 684.3 °C could be attributed to the reduction of bulk V₂O₅. The first reduction peak was related to the reduction of V₂O₅ to V₆O₁₃, and the latter was related to the reduction peaks of Cu–V mixed oxides were shifted to the low temperature range, indicating

Fig. 7 H₂-TPR profiles of Cu-V mixed oxides

Fig. 8 Durability test of Cu_1V_6 sample (Test conditions: 8000 ppm toluene, 30 ppm SO₂, air balance, GHSV = 50,000 mL g_{cat}^{-1} h⁻¹, 350 °C. The inset is the FT-IR spectra of the fresh and the used samples)

the reducibility of Cu–V mixed oxides is superior to that of VO_x. As can be seen in Fig. 6, the total hydrogen consumption increases with the increase of copper content in the mixed oxides, indicating the good reducibility of Cu than that of V. However, the activity of toluene combustion and thio-resistance ability do not correspond to the materials with the best reducibility properties (as shown in Figs. 1 and 2). Thus, the other properties would determine the activity and thio-resistance ability of this sample, due to the phase compositions and the specific surface areas.

Fig. 9 The pathway of toluene catalytic combustion in the presence of SO_2 over Cu_1V_6 sample (*square*: oxygen vacancies)

Durability test of Cu₁V₆ sample

The durability of Cu_1V_6 sample in toluene combustion in the presence of SO_2 was investigated and the result is shown in Fig. 8. The sample showed a slight deactivation in a 48-h continuous test. The conversion of toluene was maintained above 83 %. No significant difference was observed in the FT-IR spectra of the fresh and the used samples (inset). The bands in 1627 and 3400 cm⁻¹ could be attributed to the deformation vibration and stretching vibration of water molecule in the sample, respectively. Usually, the strong characteristic absorption peak of sulfate ion is located in range of 1210–1040 cm⁻¹, this band was not observed in the surface of it. The slightly deactivation of Cu_1V_6 could be due to the decrease of the specific surface area (reduced about 3 % after 48 h of test).

Discussion

Copper oxide showed good activity in toluene total oxidation. However, it was severely poisoned in the presence of SO₂. Vanadia is a strong acidic transition metal oxide and always showed good tolerance in sulfur containing atmosphere. Unfortunately, vanadium oxide alone showed low activity during toluene combustion as shown in Fig. 1. Cu–V mixed oxides prepared by the sol–gel method showed good activity in toluene combustion in the presence of SO₂ as compared with that of VO_x. However, their stability is significantly different, depending on their compositions. The Cu₁V₆ sample showed the highest activity and thio-tolerance ability in toluene combustion in the presence of SO₂. XRD characterization revealed that this sample is composed of two main phases, i.e., V₂O₅ and CuV₂O₆, while Cu₁V₁ showed only a Cu₂V₂O₇ phase, and Cu₆V₁ sample showed mixed phases of CuO and Cu₃V₂O₈. The results are mainly consistent with the phase diagram of CuO–V₂O₅ system, as reported by Fleury [47]. The crystal structure of CuV₂O₆ consists of distorted octahedral VO₆, while Cu₂V₂O₇ consists of two V–O tetrahedral structures linked by two Cu²⁺ ions,

and $Cu_3V_2O_8$ consists of oxygen tetrahedrally coordinated to V^{5+} ion and octahedrally coordinated to Cu^{2+} ion. It is reported that the tetrahedrally coordinated vanadium species are inactive in SO_2 oxidation [35]. Thus, the Cu_1V_1 sample showed good thiotolerance in toluene combustion in the presence of SO₂. The deactivation of Cu₆V₁ and CuO_x samples could be related to the existence of copper oxide phase, which can react with SO₂, forming stable sulfates on the surface of the catalyst, hence, occupied the active sites for toluene oxidation [34]. For Cu_1V_6 and VO_r , the two samples both have V_2O_5 phase in them and showed good stability in toluene combustion in the presence of SO₂, although they show different activity in toluene conversion. It is generally accepted that the uptake of SO_2 on the surface of bulk V_2O_5 is limited since the quantity of basic sites for the adsorption of SO_2 is negligible [48]. Thus, the small amount of adsorbed SO₂ may coordinate onto the V–O bond of either isolated or polymerized surface vanadium species, and resulting the (V^{5+}) ·SO₂-ads state, then, followed by the cleavage of the V^{5+} –O–SO₂ and formation of SO₃(g). The reduced vanadia sites are reoxidized by dissociatively absorbed oxygen and regenerating the active (V^{5+}) sites. For Cu_1V_6 sample, the low concentration of SO_2 selectively adsorbed on the surface of CuV₂O₆ sites with low acidity rather than adsorbed on the surface of V₂O₅ with strong acidity. The adsorbed SO₂ may be oxidized by oxygen from the Cu-O-V sites accompanied by the reduction of Cu^{2+} to Cu^{+} [49]. The sulfate formation on the CuV₂O₆ could be restrained as indicated by XRD and FT-IR characterizations (Figs. 5 and 8), thus the Cu_1V_6 sample showed good thio-tolerance as compared with those Copper-rich samples. Thus, based on the above discussions, a plausible reaction pathway can be proposed for toluene combustion over Cu_1V_6 sample in the presence of SO_2 , as shown in Fig. 9.

Conclusions

Copper and vanadium mixed oxides were prepared by the sol-gel method to investigate their performances in the oxidation of toluene in the absence and presence of SO₂. The results revealed that the catalytic toluene combustion activity and the thio-tolerance ability of the prepared samples were significantly dependent on their compositions. Cu–V mixed oxides showed better performance as compared with CuO_x and VO_x samples. Cu₁V₆ sample was found to be the best catalyst among all investigated samples. The biggest specific surface area and the formation of CuV₂O₆ phase, as well as the increased reducibility as the introduction of copper in Cu₁V₆ sample will account for the good toluene combustion activity in the presence of SO₂. Therefore, Cu₁V₆ sample showed good durability during long term exposure to SO₂.

Acknowledgments The authors thank the financial support of Open-end Foundation of environmental science and engineering top priority discipline of Zhejiang Province (No. G2853105014).

References

1. Ojala S et al (2011) Top Catal 54:1224-1256

- 2. Li WB, Gong H (2010) Acta Phys-Chim Sin 26:885-894
- 3. Parus WJ, Paterkowski W (2009) Pol J Chem Tech 11:30-37
- 4. Ordonez S, Paredes JR, Diez FV (2008) Appl Catal A 341:174-180
- 5. Huang H et al (2010) Reac Kinet Mech Cat 101:417-427
- 6. Ohtsuka H (2011) Catal Let 141:413-419
- 7. Zi X et al (2011) Catal Today 175:223-230
- 8. Gelin P et al (2003) Catal Today 83:45-57
- 9. Corro G, Cano C, Fierro JLG (2010) J Mol Catal A 315:35-42
- 10. Ohtsuka H (2013) Catal Let 143:1043-1050
- 11. Cimino S et al (2010) Catal Today 154:283-292
- 12. Venezia AM et al (2007) J Catal 251:94-102
- 13. Bounechada D et al (2013) Phys Chem 15:8648-8661
- 14. Colussi S et al (2010) Catal Today 55:59-65
- 15. Escandon LS et al (2008) J Hazard Mater 153:742-750
- 16. Arosio F et al (2006) Catal Today 117:569-576
- 17. Hurtado P et al (2004) Appl Catal B 47:85-93
- 18. Escandon LS et al (2003) Catal Today 78:191–196
- 19. Di Carlo G et al (2010) Chem Commun 46:6317-6319
- 20. Liotta LF et al (2012) Top Catal 55:782-791
- 21. Liotta LF et al (2007) Appl Catal B 75:182-188
- 22. Liotta LF et al (2007) Top Catal 42:425-428
- 23. Arosio F et al (2008) Appl Catal B 80:335-342
- 24. Xue B et al (2007) Gong Cuihua 15:19-24
- 25. Li J et al (2006) Environ Sci Tech 40:6455-6459
- 26. Decker SP et al (2002) Environ Sci Tech 36:762–768
- 27. Zhou C et al (2003) Wuli Huaxue Xuebao 19:246-250
- 28. Rosso I et al (2001) Appl Catal B 34:29-41
- 29. Rosso I et al (2003) Appl Catal B 40:195-205
- 30. Rosso I, Saracco G, Specchia V (2003) Korean J Chem Eng 20:222-229
- 31. Tsoncheva T et al (2013) Appl Catal A 453:1–12
- 32. Konsolakis M et al (2013) J Hazad Mater 261:512-521
- 33. Aranda A et al (2012) Appl Catal B 127:77-88
- 34. Yang Z et al (2014) RSC Adv 4:39394-39399
- 35. Lapina OB et al (1999) Catal Today 51:469-479
- 36. El Assal Z et al (2013) Top Cata 56:679-687
- 37. Genuino HC et al (2012) J Phys Chem C 116:12066-12078
- 38. Vu VH et al (2008) AIChE J 54:1585-1591
- 39. Wu Z et al (2015) Mater Res. Bulletin 70:567-572
- 40. Carabineiro SAC et al (2015) Catal Today 244:103-114
- 41. Kim SC et al (2014) Powder Technol 266:292-298
- 42. Soylu GSP et al (2010) Chem Eng J. (Amsterdam, Netherlands) 162:380-387
- 43. Palacio LA et al (2008) Catal Today 133-135:502-508
- 44. Morales MR et al (2008) Fuel 87:1177-1186
- 45. Palacio LA et al (2008) J Hazad Mater 153:628-634
- 46. Wachs IE et al (2003) Catal Today 78:13–24
- 47. Fleury P (1966) Seances Acad Sci Ser C 263(22):1375-1377
- 48. Dunn JP et al (1999) Today 51:301-318
- 49. Kawada T, Hinokuma S, Machida M (2015) Catal Today 242:268-273