文章编号: 1003-9015(2020)05-1182-07

高分散 Mo 基催化剂煤直接液化催化性能

谢 晶^{1,2,3}, 舒歌平^{2,3}, 高山松^{2,3}, 王洪学^{2,3}, 李剑宇¹, 卢晗锋¹, 陈银飞¹ (1. 浙江工业大学 化学工程学院, 浙江 杭州 310014; 2. 中国神华煤制油化工有限公司上海研究院, 上海 201108; 3. 煤直接液化国家重点工程实验室, 上海 201108)

摘 要:为了提高钼基催化剂的煤直接液化催化性能和工业应用的可能性,研究了含钼化合物粉体催化剂性质与煤直 接催化性能的关系,制备出高稳定性的三氧化钼油浆催化剂和两种高活性的钼铁复合催化剂。结果表明,含钼化合物 的催化活性主要与分散性和晶粒度相关,纳米级三氧化钼活性高,微米级含钼化合物活性低;通过高速剪切和分散剂 的锚固作用,纳米三氧化钼粉体能更好地分散于溶剂油中并保持长时间稳定,催化活性也得到显著提高;浸渍法和共 沉淀法制备的钼铁复合催化剂中的钼元素处于高度分散状态,钼铁复合催化剂在煤直接液化中展现出协同催化作用, 相比 Fe 催化剂油产率提高了 4.5%~5%。

 关键词:煤直接液化;钼催化剂;粒度;分散性;油产率

 中图分类号:TQ529.1

 文献标志码:A

DOI: 10.3969/j.issn.1003-9015.2020.05.012

Catalytic performance of Mo based catalysts for direct coal liquefaction

XIE Jing^{1,2,3}, SHU Ge-ping^{2,3}, GAO Shan-song^{2,3}, WANG Hong-xue^{2,3}, LI Jian-yu¹, LU Han-feng¹, CHEN Yin-fei¹

(1. College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China;

2. China Shenhua Coal to Liquid and Chemical Shanghai Research Institute, Shanghai 201108, China;

3. National Engineering Laboratory for Direct Coal Liquefaction, Shanghai 201108, China)

Abstract: In order to enhance catalytic activity of Mo based catalysts for potential industrial applications in direct coal liquefaction, affecting factors of molybdenum compound powder catalysts on direct coal liquefaction were studied, and molybdenum oxide slurry catalysts with high stability and two highly active Mo-Fe composite catalysts were prepared. The results show that the catalytic activity of Mo compounds is closely related to dispersion and crystal size. The nano molybdenum trioxide showed good catalytic activity, while the micron molybdenum compounds had almost no catalytic effect on coal liquefaction. The nano molybdenum trioxide powder prepared by high-speed shear with dispersion agent was highly dispersed and stable in the solvent oil, which can also promote catalytic activity. Mo was highly dispersed in the Mo-Fe composite catalysts synthesized by impregnation and co-precipitation. The synergy catalytic effect of Mo-Fe composite catalysts increase oil yields by 4.5%-5% when compare to pure Fe catalysts.

Key words: direct coal liquefaction; molybdenum catalyst; particle size; dispersion; oil yield

1 前 言

煤直接液化生产液体燃料是一种清洁高效的煤炭利用技术,是弥补我国石油资源不足的重要手段, 其油品低硫、低氮、热值高,尤其环烷烃组分高,可以成为航空、航天等特种油品的潜在来源^[14]。铁和

收稿日期: 2019-12-27; 修订日期: 2020-03-19。

基金项目: 国家重点研发计划(2016YFB0600303); 国家能源集团科技创新(GJNY-19-21)。

作者简介:谢晶(1981-),湖南醴陵人,浙江工业大学博士生。通信联系人:卢晗锋, Email: luhf@zjut.edu.cn

钼是煤直接液化催化剂中应用广泛的两类活性元素,它们转化为相应的硫化物后具备活化氢的能力,进 而能够催化煤及其中间产物向油转化[5-8]。铁基催化剂性价比高,并且对煤大分子有一定的催化裂解作用, 德国 IGOR(integrated groos oil refining)工艺、日本 NEDOL(liquefaction process developed by new energy and industrial technology development organization)工艺、美国 HTI(hydrocarbon technology incorporation)工艺以 及在中国建成的世界唯一工业化的百万吨级装置都使用了铁基催化剂19-10]。钼基催化剂活性比铁基催化剂 高,但因价格昂贵未能实现工业应用。

载体型的催化剂容易被大分子产物、煤和灰等物质堵塞孔道而失活,因此煤直接液化一般使用分散 型催化剂[11-14]。煤直接液化反应过程主要是煤的加氢液化过程,为了提高单位重量铁催化剂对氢的活化 能力常采用特殊的制备技术降低铁催化剂粒度和提高分散性。例如日本 NEDOL 工艺使用两级研磨将黄 铁矿降至 0.7 µm^[15],有研究者引入异质元素以改性铁物种的结构和电子性能^[16-17],或采用激光、火焰热 解,反向胶束和包覆等技术制备出超细高活性的铁催化剂[18-20],但技术复杂能耗高,活性提升有限。钼 基催化剂对氢活化能力强,具有降低煤直接液化苛刻度的潜力,实际应用中常将水溶性的钼盐浸渍在煤 粉表面或者将油溶性的钼盐溶解于油煤浆中使钼高度分散,以提高钼元素催化活性,减少用量[21-24],但 处理过程偏复杂或原料成本高。粉体含钼化合物合成简单,成本可控,直接加入煤液化体系中就能产生 很好的催化效果[25],工业应用潜力大,但粉体含钼化合物粒度大、分散性差,催化效果不如其他2种方 式。因此,提高粉体含钼化合物催化剂的活性,研究在较低用量时发挥钼对氢的强活化能力,对推动钼 基催化剂进入工业应用,提高煤直接液化技术的效率有重要意义[26-27]。

本文考察了4种市售含钼化合物的粒度和分散性对煤直接液化性能影响,制备出能够在溶剂油中高 度分散和稳定的三氧化钼油浆催化剂,在此基础上,采用浸渍和共沉淀等易于工业放大的方法合成出两 种不同结构的高活性钼铁复合催化剂,大幅提高了煤液化催化性能。

2 实验部分

2.1 实验原料

实验所用的液化煤粉为神东煤,其元素分析、工业分析和岩相分析结果列于表1。表中,w为质量 分数, Ø为体积分数,将煤研磨至150 μm 以下,然后在100 ℃下真空干燥 6 h,密闭保存。所用的溶剂 油为百万吨级煤直接液化工业装置生产的煤液化循环溶剂,其性质列于表2。

表1 神东煤的煤质分析

Table 1 Proximate, ultimate and petrographical analysis of Shendong coal											
Proximate analysis w/ %			Petrographic analysis φ / %			Ultimate analysis ¹) w / %					
$M_{ m ad}$	A_{d}	$V_{\rm daf}$	Vitrinite	Inertinite	Exinite	С	Н	O2	Ν	S	
4.46	5.86	34.89	54.2	44.2	0.4	79.16	4.38	15.21	0.98	0.27	
M_{ad} —air-dried moisture: A_d —dry ash: V_{dar} —volatiles on a dry-ash-free basis											

¹⁾ on a dry ash - free basis.²⁾ determined by difference

2.2 催化剂

2.2.1 含钼化合物粉体催化剂

外购了4种含钼化合物粉末,分别为四 水合钼酸铵((NH4)6Mo7O24·4H2O,分析纯,国 药集团化学试剂有限公司, 编号为 AM); 微 米级硫化钼(化学纯,上海华谊集团公司,编

	Tal	ble 2 Proper	rties of	the recy	ycle solver	nt	
$\rho^{20}/$	$f_{a}^{1)}$	PDQI ²⁾ /	PDQI ²⁾ / w / %				
$(g \cdot cm^{-3})$		$(mg \cdot g^{-1})$	С	Н	S	Ν	O ³⁾
0.991	0.49	18.88	89.49	9.72	0.003	0.02	0.77
¹⁾ aromaticity	(f_a) c	alculated on ¹ H	H NMR	spectra	and eleme	ntal com	position

表2 溶剂油的性质

²⁾proton donor quality (PDQI) calculated on ¹H NMR spectra and elemental composition; ³⁾ determined by difference.

号为 m-MoS₂); 微米级三氧化钼(化学纯, 国药集团化学试剂有限公司, 编号为 m-MoO₃)和纳米级的三氧 化钼(杭州吉康新材料有限公司,编号为 n-MoO₃)。4 种含钼化合物在 100 ℃下真空干燥 3 h,研磨过筛至 小于 80 µm。

2.2.2 三氧化钼油浆催化剂

将m-MoO3和n-MoO3分别加入溶剂油中,再加入一定量分散剂,以20000r·min⁻¹高速剪切分散3min, 制备获得三氧化钼油浆催化剂。其中微米级三氧化钼油浆催化剂编号为 m-Mo-0.2, 加入分散剂的量为三 氧化钼质量的 20%;纳米级三氧化钼油浆催化剂编号分别为 n-Mo-0.1 和 n-Mo-0.2,分散剂量分别为三氧 化钼质量的 10%和 20%。

2.2.3 高分散钼铁复合催化剂

采用浸渍法和共沉淀法制备出 2 种钼铁复合催化剂 Mo&Fe-1 和 Mo&Fe-2, Mo/Fe 质量比为 5%。其 中浸渍法制备过程是:硫酸亚铁为原料配制成溶液,先以氨水溶液作为沉淀剂沉淀亚铁离子,再通入空 气氧化亚铁沉淀,制备出晶相为y-FeOOH的催化剂,记为 Fe 催化剂,详细步骤见文献[14];然后在 Fe 催化剂上饱和浸渍一定量钼酸铵溶液,经干燥、研磨制备出钼铁合催化剂 Mo&Fe-1。共沉淀法钼铁复合 催化剂 Mo&Fe-2 的制备过程与上述 Fe 催化剂制备过程类似,区别在于预先在氨水溶液中加入一定量的 四水合钼酸铵,然后与硫酸亚铁溶液共同进料,使钼和铁共同沉淀。

2.3 煤直接液化催化性能评价

在 500 mL 高压釜内对神东煤的催化液化进行催化剂性能的评价。干煤粉、溶剂油和硫助剂的用量分 别为 28.0、42.0 和 0.32 g。含钼催化剂的用量是按钼元素与所用干煤粉的质量比值作为基准加入,分别 为 0.05% 和 0.1%; Fe 催化剂用量是以 Fe 元素与干煤质量比为 1% 加入,详见表 3。高压釜依次用氮气 和氢气置换后再充入氢气至 10 MPa(常温), 然后以 20 ℃·min⁻¹升温至 455 ℃恒温反应 1 h, 快速降温后 取气相产物进行色谱分析,取全部的液固相产物依次用正己烷和四氢呋喃进行索氏抽提,进而计算获得 煤转化率、氢耗、气产率(Gas)、水产率(H2O)、油产率(Oil)和沥青烯(前沥青烯和沥青烯, PAA)产率,产 物分析和计算方法详见文献[14]。

Table 3 Results of coal liquefaction by molybdenum compound catalysts								
Getelent	Crystallized size1)/	Catalysts amount ²⁾ / %	Conversion / %	H ₂ consumption	Yield / %			
Catalyst	nm			/ %	Gas	H ₂ O	PAA	Oil
None	-	0	79.0	2.8	15.6	11.9	12.3	42.0
Fe	14.9	-	87.9	4.0	14.5	12.5	9.7	55.2
AM	>100	0.10	79.4	3.2	16.7	11.7	12.1	42.1
m-MoS ₂	97.8	0.10	80.2	3.0	16.2	11.8	11.1	44.1
m-MoO ₃	>100	0.10	80.0	3.0	16.7	11.6	13.5	41.2
n-MoO3	69.8	0.10	85.1	3.9	14.4	12.8	6.4	55.4
<i>m</i> -Mo-0.2	-	0.05	79.5	3.0	15.4	12.1	9.5	45.5
<i>n</i> -Mo-0.1	-	0.05	84.2	3.8	14.5	12.7	6.5	54.3
<i>n</i> -Mo-0.2	-	0.05	86.3	4.0	14.3	12.8	6.1	57.1
Mo&Fe-1	14.9	0.05	88.2	4.5	13.8	13.3	5.3	60.2
Mo&Fe-2	11.3	0.05	87.9	4.5	14.0	13.4	5.3	59.7

表3 含钼催化剂对神东煤的催化液化结果 1.11 fastio . . -lash d

Direct coal liquefaction conditions: initial hydrogen pressure is 10.0 MPa, reaction temperature is 455 °C for 1 h.

¹⁾ by Scherrer Equation; ²⁾ catalysts amount are based on ratio of active element to dry coal, such as Fe/dry coal=1% or Mo/dry coal=0.05%

2.4 催化剂表征

催化剂的晶相结构(X-ray diffractomer, XRD)在 Rigaku 公司 D/max-RB 型 X 射线粉末衍射仪上进行, 采用 CuKα射线源(λ=0.154 nm), Ni 滤波, 管电流 200 mA, 管电压 40 kV, 扫描范围 5°~80°, 温度为室 温。含钼化合物催化剂的形貌和粒度采用日立 FlexSEM1000 扫描电镜(scanning electron microscopy, SEM) 观察,加速电压为5kV;Fe催化剂和钼铁复合催化剂的形貌和粒度采用日立S-4800型扫描电镜观察, 加速电压为 15 kV。钼铁复合催化剂的透射电镜(transmission electron microscope, TEM)及能谱元素分布 (energy dispersion x-ray spectrum, EDX)采用 FEI 公司的 Tecnai G2 F30 透射电镜及配套能谱仪测定,样品 预先用乙醇超声分散1h,测试电压200kV。

3 结果与讨论

3.1 粉体含钼化合物催化剂的煤直接液化性能

外购的 4 种含钼化合物的 SEM 结果见图 1, 它们的形貌不规则, 粒度差别很大, 其中 AM 是长度和厚 度均为几微米至几十微米的块状物, m-MoS2 是粒度为 5~20 μm 的薄片, m-MoO3 是长为 20~100 μm、厚度

图 1 含钼化合物催化剂的 SEM 图 Fig.1 SEM images of the molybdenum compound catalysts

为 3~5 μm 的片状, *n*-MoO₃ 是平均粒度约为 100 nm 的颗粒。 图 2 的 XRD 结果显示, 4 种含钼化合物的衍射峰分别与相应 的(NH4)₆Mo₇O₂₄·4H₂O、MoS₂ 和 MoO₃ 典型衍射峰相对应。 *m*-MoO₃ 和 *n*-MoO₃ 的衍射峰位置基本相同,证实它们为同一 类型化合物,但衍射峰强度差异说明两者结晶度差别很大;表 3 中通过谢乐公式计算出的晶粒度数据显示, *n*-MoO₃ 的晶粒度 相对较小为 69.8 nm, 而 *m*-MoO₃ 的晶粒度大于 100 nm, 与此 同时 MoS₂ 为 97.8 nm, AM 的晶粒度也大于 100 nm。

按 Mo 与干煤的质量比为 0.1%,对含钼化合物进行煤直 接液化性能评价,结果见表 3,可以看出,AM 和 *m*-MoO₃煤 液化各个指标与不加催化剂时相差不大,没有体现出催化效

果; *m*-MoS₂效果也很弱,煤转化率和油产率仅分别提高了 1.2% 和 2.1%; *n*-MoO₃的催化作用明显,煤 转化率和油产率分别提高 6.1% 和 13.4%。含钼化合物催化剂活性与其物化性质密切相关,*n*-MoO₃活性 高的主要原因是颗粒分散性高、晶粒度小,能够形成更多小晶粒高活性钼硫化物,增大了与氢的碰撞活 化概率。水合氧化铁容易生成小晶粒、高活性的 Fe_{1*}S 并保持很好的稳定性,这是它应用到工业装置重要 原因之一^[8]。将晶相为γ-FeOOH 的 Fe 催化剂按 Fe 与干煤比 1% 进行煤直接液化评价,Fe 催化剂的油产率 与 *n*-MoO₃相当,但煤转化率高 2.8%,说明 Fe 催化剂对煤热解为沥青烯起到较好的催化作用,而 *n*-MoO₃ 对氢的活化能力更强,加速了沥青烯向油转化速率控制步骤,因此有更低的沥青烯产率。

3.2 三氧化钼油浆催化剂的煤直接液化性能

煤直接液化是一个复杂的气液固三相催化反应,高度分散于煤浆体系内的催化剂才能更高效地发挥 催化作用。为提高三氧化钼的分散性和稳定性,在溶剂油中分别对 *n*-MoO₃ 和 *m*-MoO₃ 粉体高速剪切制成 油浆催化剂。图 3 的 300 h 静置实验发现,*m*-MoO₃ 在溶剂油中不稳定,加入分散剂后小颗粒能够稳定较 长时间,但大颗粒沉降很快,这是因为 *m*-MoO₃ 中绝大部分是微米级的大颗粒,比表面积小能吸附结合 分散剂锚固基团少,剪切也难以破坏它的本体结构。*n*-MoO₃ 颗粒较小,剪切分散后在溶剂油中的稳定性 高,72 h 后才出现颗粒集聚;加入分散剂的 *n*-MoO₃ 油浆更加细腻,稳定时间更长,其中 *n*-Mo-0.1 在 300 h 时才出现颗粒聚集,*n*-Mo-0.2 在 300 h 内几乎没有变化。这是因为纳米 MoO₃ 颗粒表面可以吸附大量的 分散剂锚固基团形成一定厚度的保护层,阻止颗粒间的聚集,同时分散剂溶剂化链与溶剂油结合使颗粒 稳定分散于溶剂油中。

2020年10月

n-MoO₃与 Fe 催化剂性能相当,但 0.1%的添加量仍然很大,使用成本高。减少一半的用量至 0.05%,测试了 MoO₃油浆催化剂的煤液化性能,结果见表 3。可以看出 *m*-Mo-0.2 相比不加催化剂时油产率提高了 3.5%,沥青烯产率下降了 2.8%;纳米级三氧化钼油浆催化剂展现出更好的活性,其中 *n*-Mo-0.1 的转化率和油产率分别为 84.2%和 54.3%,相比不加催化剂的油产率提高了 12.3%,与两倍用量的 *n*-MoO₃ 比也仅低 1.1%,稳定性更好的 *n*-Mo-0.2 油产率甚至超过 Fe 催化剂 1.9%,沥青产率低 3.6%,说明三氧化钼粉体在溶剂油中的分散和稳定性得到强化后活性明显提高。

3.3 高分散Mo-Fe复合催化剂的煤直接液化性能

改善钼催化剂的分散性和稳定性能够促进沥青烯转化为油,但对提高煤转化率的作用不大。利用铁 氧化物来分散和稳定钼元素,既能发挥钼对氢的强活化能力,又可利用铁对煤的催化热裂解作用,从而 大幅提升煤液化效果。

以水溶性的四水合钼酸铵为原料,分别采用浸渍法和共沉淀法制备了两种钼铁复合催化剂 Mo&Fe-1 和 Mo&Fe-2,钼与铁的质量比为 5:100。图 4 的扫描电镜和图 5 的 XRD 结果可以看出,它们的形貌和晶

图 4 钼铁复合催化剂的 SEM 图 Fig.4 SEM images of Fe and Mo-Fe composite catalysts

相结构差异较大,浸渍法制备的 Mo&Fe-1 仍然保持了 Fe 催 化剂的结构,它们是长条状的γ-FeOOH,铁氧化物的晶粒尺寸 都为 14.9 nm;共沉淀法制备的 Mo&Fe-2 的粒度明显下降, XRD 显示除γ-FeOOH 外还有明显的α-FeOOH 晶相衍射峰,晶 粒尺寸也下降至 11.3 nm,可能部分 Mo 进入 FeOOH 晶格形成 了 Mo-O-Fe 改变了铁氧化物的结构,同时抑制了铁氧化物晶 粒的生长。两个催化剂都没有检测到钼化合物的衍射峰,图 6 催化剂的元素分布证实钼在两个催化剂中处于高度分散状 态,浸渍法制备的 Mo&Fe-1 中 Mo 比较弥

图 6 钼铁复合催化剂的 TEM 及 EDX 元素分布 Fig.6 TEM images and EDX mapping of Fe and Mo-Fe composite catalysts

散,铁氧化物在催化剂中起到载体作用, Mo 物种吸附到铁氧化物表面形成分子级别的高度分散, 而共沉 淀法制备的 Mo&Fe-2 中的 Mo 的分布和 Fe 基本一致, 说明 Mo 主要是与铁氧化物相结合而实现高度分 散。

表3的煤液化结果显示两种钼铁复合催化剂活性相当,它们的煤转化率达到或超过了Fe催化剂,油 产率提升幅度较大,分别提高4.5%和5%,相比n-Mo-0.2也分别提高了2.6%和3.1%,并且氢耗达到 最高的4.5%,沥青产率下降至最低的4.4%,说明钼铁复合催化剂对氢的活化能力得到了增强,钼和铁 两种活性元素产生了协同催化作用,相比Hu等^[24]在煤粉上原位浸渍合成的高分散钼铁复合催化剂 Fe₂(MoS₄)₃增强作用更明显。虽然两种方法合成的钼铁复合催化剂的煤液化活性区别不大,但钼铁之间 的结合状态差异会造成作用机制有所不同,浸渍法制备的Mo&Fe-1借助了铁氧化物载体作用实现了钼分 散,充分发挥钼的催化能力,共沉淀法制备的Mo&Fe-2中铁和钼形成了复合化合物,使两种元素的分散 性都得到了改善,更有利于发挥协同催化作用。

4 结 论

1) 含钼化合物的催化活性与其粉体的分散性和晶粒度密切相关,纳米级三氧化钼活性高,微米级硫 化钼和钼酸铵活性极低。

2) 通过高速剪切和分散剂的锚固作用改善了三氧化钼在溶剂油中的分散性和稳定性,进而提高了煤 直接液化催化活性;其中0.05% 添加量的*n*-Mo-0.2 油浆催化剂的油产率超过1% 添加量的 Fe 催化剂油 产率1.9%。

3) 浸渍法和共沉淀法制备的钼铁复合催化剂能够产生协同催化作用,相比 Fe 催化剂油产率提高了 4%~5%。钼元素在钼铁复合催化剂中处于高度分散状态,浸渍法催化剂 Mo&Fe-1 更好地发挥了钼的催 化作用,共沉淀法催化剂 Mo&Fe-2 更好地发挥了钼和铁的协同催化作用。

参考文献:

- [1] 舒歌平. 神华煤直接液化工艺开发历程及其意义 [J]. 神华科技, 2009, 27(1): 78-82.
 SHU G P. Development history and its significance of Shenhua coal liquefacion [J]. Shenhua Science and Technology, 2009, 7(1): 78-82.
- [2] 刘振宇. 煤直接液化技术发展的化学脉络及化学工程挑战 [J]. 化工进展, 2010, 2(2): 193-197.
 LIU Z Y. Principal chemistry and chemical engineering challenges in direct coal liquefaction technology [J]. Chemical Industry and Engineering Progress, 2010, 2(2): 193-197.
- [3] SHUI H F, CAI Z C, XU C. Recent advances in direct coal liquefaction [J]. Energies, 2010, 3(2): 155-170.
- [4] 李军芳, 赵学社, 李文博, 等. 煤直接液化油航空煤油馏分的性质与组分分析 [J]. 煤炭转化, 2013, 36(4): 32-34
 LI J F, ZHAO X S, LI W B, *et al.* Property of constituents analysis of coal direct liquefaction aviation kerosene distillate [J]. Coal Conversion, 2013, 36(4): 32-34.
- [5] LI X, HU S, JIN L, et al. Role of iron-based catalyst and hydrogen transfer in direct coal liquefaction [J]. Energy & Fuels, 2008, 22(2): 1126-1129.

- [6] DERBYSHIRE F. Role of catalysis in coal liquefaction research and development [J]. Energy & Fuels, 1989, 3(3): 273-277.
- [7] 吴艳, 赵鹏, 毛学锋. 煤液化条件下铁系催化剂的相变 [J]. 煤炭学报, 2018, 43(5): 1448-1454.
- WU Y, ZHAO P, MAO X F. Phase transformation of iron-based catalyst at coal liquefaction [J]. Journal of China Coal Society, 2018, 43(5): 1448-1454.
- [8] KANEKO T, TAZAWA K, KOYAMA T, et al. Transformation of iron catalyst to the active phase in coal liquefaction [J]. Energy & Fuels, 1998, 12: 897-904.
- [9] ANDERSON R R, BOCKRATH B C. Effect of sulphur on coal liquefaction in the presence of dispersed iron or molybdenum catalysts [J]. Fuel, 1984, 63(3): 329-333.
- [10] 李克健, 吴秀章, 舒歌平. 煤直接液化技术在中国的发展 [J]. 洁净煤技术, 2014, 20(2): 39-43.
 LI K J, WU X Z, SHU G P. Development of direct coal liquefaction technology in China [J]. Clean Coal Technology, 2014, 20(2): 39-43.
- [11] 王村彦,朱晓苏,吴春来. 煤直接液化催化剂及其高分散化 [J]. 煤炭转化. 1998, 21(2): 14-16. WANG C Y, ZHU X S, WU C L. Catalyst for direct coal liquefaction and its high dispersing [J]. Coal Conversion, 1998, 21(2): 14-16.
- [12] SUZUKI T. Development of highly dispersed coal liquefaction catalysts [J]. Energy & Fuels, 1994, 8(2): 341-347.
- [13] HIRSCHON A S, JR R B W. Highly dispersed coal liquefaction catalysts [J]. Fuel, 1992, 71(9): 1025-1031.
- [14] XIE J, LU H F, SHU G P, *et al.* The relationship between the microstructures and catalytic behaviors of iron-oxygen precursors during direct coal liquefaction [J]. Chinese Journal of Catalysis, 2018, 39(4): 857-866.
- [15] MOCHIDA I, SAKANISHI K, SUZUKI N, et al. Progresses of coal liquefaction catalysts in Japan [J]. Catalysis Surveys from Japan, 1998, 2(1): 17-30.
- [16] 谢晶,卢晗锋,陈银飞,等.助剂改性 FeOOH 及其煤直接液化催化活性 [J]. 化工学报. 2016, 67(5): 1892-1899. XIE J, LU H F, CHEN Y F, *et al.* Promoters modified feooh and their catalytic performances for direct coal liquefaction [J]. CIESC Journal, 2016, 67(5): 1892-1899.
- [17] ZHAO J, FENG Z, HUGGINS F E, et al. Binary iron oxide catalysts for direct coal liquefaction [J]. Energy & Fuels, 1994, 8(1): 38-43.
- [18] EKLUND P C, STENCEL J M, BI X X, et al. Ultrafine iron catalysts for coal dissolution [J]. Preprints of Papers-American Chemical Society, Division of Fuel Chemistry, 1991, 36(2): 551-559.
- [19] LINEHAN J C, BEAN R M, MATSON D W, *et al.* New synthetic methods for the production of ultra-fine coal liquefaction catalysts
 [J]. Preprints of Papers-American Chemical Society, Division of Fuel Chemistry, 1992, 37(1): 488-496.
- [20] 周晓东,马凤云,刘景梅,等. 包覆型 Fe 基纳米催化剂制备及对低阶煤直接液化的影响 [J]. 煤炭学报, 2018, 43(10): 2895-2902.

ZHOU X D, MA F Y, LIU J M, *et al.* Effect of coated Fe₂O₃ nanocatalysts on direct liquefaction of lower-rank coal [J]. Journal of China Coal Society, 2018, 43(10): 2895-2902.

- [21] BURGESS C E, ARTOK L, SCHOBET H H. Effect of molybdenum sulfide catalyst on the mechanism of coal liquefaction [J]. Preprints of Papers-American Chemical Society, Division of Fuel Chemistry, 1991, 36(2): 462-469.
- [22] INUKAI Y. Hydroliquefaction of illinois no.6 coal with petroleum atmospheric residue using oil-soluble molybdenum catalyst [J]. Fuel Process Technology, 1995, 43(2): 157-167.
- [23] WARZINSKI R P, BOCKRATH B C. Molybdenum hexacarbonyl as a catalyst precursor for solvent-free direct coal liquefaction [J]. Energy & Fuels, 1996, 10(3): 612-622.
- [24] HU H, BAI J, GUO S, et al. Coal liquefaction with in situ impregnated Fe₂(MoS₄)₃ bimetallic catalyst. Fuel, 2002, 81(11/12): 1521-1524.
- [25] 艾军,黄澎,谷小会,等. 钼系催化剂对神东煤直接液化的影响 [J]. 洁净煤技术, 2011, 17(2): 38-40. AI J, HUANG P, GU X H, *et al.* Effect of molybdenum catalysts on direct shendong coal liquefaction [J]. Clean Coal Technology, 2011, 17(2): 38-40.
- [26] ZHAO J M, FENG Z, HUGGINS F E, et al. Role of molybdenum at the iron oxide surface [J]. Journal of Catalysis, 1994, 148(1): 194-197.
- [27] 岳国, 蒋庆哲, 宋昭峥. 煤直接液化高分散性催化剂的研究进展 [J]. 化工进展, 2008, 27(s1): 223-228.
 YUE G, JIANG Q Z, SONG Z Z. Progress of highly dispersed catalysts for direct coal liquefaction [J]. Chemical Industry and Engineering Progress, 2008, 27(s1): 223-228.