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ABSTRACT: Ionic liquids (ILs), especially functional ILs, have
attracted much attention as tunable sorbents for CO2 capture
owing to their unique properties. Given the significant role of the
structure, an extensive data bank was established containing 2500
experimental capacity data points of CO2 capture as a function of
operational temperature and pressure by 232 kinds of ILs during
2002 to 2025. These total data were randomly divided into an 80%
training set and 20% test set. Based on the group contribution
(GC), the structures of these ILs are divided into 44 types of
fragments, including ionic fragments (IFs). All 44 fragments, T,
and P were used as the input parameters, while the capacity was
regarded as the output parameter to establish four kinds of GC-
based machine learning (ML) regression models, multilayer
perceptron (MLP), support vector regression (SVR), random forest (RF), and gradient boosting regression (GBR), representing
a good balance between complexity and performance. Among these models, the GC-GBR model demonstrated the strongest
predictive ability. Feature importance and SHAP analysis uncover a quantitative structure−property relationship (QSPR) where
abundant aliphatic groups are strong indicators of low performance, while the amine group is identified as a key promoter of high
performance. This interpretability transforms the model from a black box into an interpretable tool for molecular design. This is the
first time that GBR-SHAP has been used for analysis of CO2 capture performance by functional ILs, and we hope that these GC-
based ML models could be used to develop functional ILs in the future for efficient CO2 capture.
KEYWORDS: ionic liquids, CO2 capture, carbon neutrality, quantitative structure-property relationship, machine learning, SHAP

1. INTRODUCTION
According to the report “State of the Global Climate 2024”
recently published by the World Meteorological Organization
(WMO), the CO2 mole fraction reached a new high (417.9 ±
0.2 ppm) in 2022, while the preindustrial mole fraction of CO2
is only 278.3 ppm.1 It is clear that a large amount of CO2 is
emitted through the combustion of fossil fuels into the
atmosphere every year, resulting in the human-caused global
climate changes and leading to widespread adverse impacts on
food and water security, human health, and economies and
society and related losses and damages.2 Thus, a series of
technologies such as carbon capture, utilization, and storage
(CCUS) have been developed as an efficient way of reducing
carbon emissions during these decades.3 Among these
technologies, monoethanolamine (30 wt % in water) has
been widely used as an efficient CO2 absorbent in flue gas
treatment. Due to their high CO2 desorption and regeneration
temperature (120−140 °C), alkanolamine based sorbents have
high energy consumption as well as high solvent loss. Because
CO2 is a cheap and abundant C1 resource, the processes from

CO2 to value-added chemicals have been well developed
through conversion and reduction.4,5 As CO2 capture is the
key process, it is crucial to develop alternative sustainable
CCUS technologies for efficient CO2 capture.

6

Ionic liquids (ILs) are considered as green and sustainable
solvents or advanced materials due to their unique
physicochemical properties, including nonflammability, wide
electrochemical window, high thermal and chemical stability,
and adjustable structures of cations and anions.7 It is predicted
that there are approximately 1018 accessible room temperature
ILs, including binary and ternary mixtures.8 Thus, ILs have
been developed a lot in the recent decades as solvents,
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sorbents, catalysts, and carriers for diverse applications in many
research fields,9 such as energy storage and conversion,10

separation/purification and extraction,11 chemical and materi-
als synthesis,12 and pharmaceutics and biomedicine.13 The
application of ILs in CO2 capture is based on a pioneer work
reported by Brennecke et al.,14 exhibiting that CO2 is highly
soluble in ILs (in their work, 1-butyl-3-methylimidazolium
hexafluorophosphate [Bmim][PF6] was used) while the CO2-
rich phase is not significantly contaminated by ILs.
Subsequently, more kinds of ILs have been developed for
CO2 or other gas separations.15 Subsequently, various
conventional ILs have been reported, which are composed of
cations with different alkyl chain lengths and fluorinated anions
such as halogen anions [X] (X = F, Cl, Br, or I),
tetrafluoroborate ([BF4]), hexafluorophosphate ([PF6]), and
bis(trifluoromethanesulfonyl) imide ([Tf2N]).

16,17 However,
conventional ILs improved CO2 capacity through weak

physical interaction, which is not a benefit for postcombustion
flue gas CO2 capture.

18 Compared with conventional ILs,
functional ILs with active sites have been developed since 2002
for efficient CO2 capture at low-concentration conditions or
even from ambient air.19−22 The cations can be functionalized
mainly with amino groups,23,24 while anions have a variety of
structures, including amino acid anions,25−27 alkoxide anions,28

carboxylate anions,29,30 azolate anions,31−33 phenolates,34−36

pyridinolate,37−39 imide anions,40,41 carbanions,42−44 etc.
(Figure 1). Although the experimental methods based on
experiences and “trial-and-error” process are still mainstream
for searching efficient ILs for CO2 capture, its time
consumption is an inevitable drawback.45

Along with the development of experiments, several
equations and models have been developed to overcome the
time-consumption drawback and identify efficient sorbents for
CO2 capture, such as the equation of state (EoS),

46 molecular

Figure 1. Typical functional cations (a) and functional anions (b).

Figure 2. Schematic of generated fragments as descriptors for machine learning based on the database of CO2 capacities of functional ILs.
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dynamics (MD) simulation,47 UNIFAC model,48 Conductor-
like Screening Model for Real Solvents (COSMO-RS),49

machine learning (ML),50 etc. Among these prediction
methods, ML, the core of artificial intelligence (AI), performs
better in high-dimensional data classification and prediction
and has the potential to significantly save costs and improve
efficiency. By applying ML to the study of CO2 capture by ILs,
computers can simulate the linear or nonlinear relationship
between the structure of ILs and CO2 capture performance, as
well as predict the CO2 capture performance by ILs with
specific structures under specific conditions.50 Many ML
models, including artificial neural network (ANN), support
vector machine (SVM), etc., have been built for CO2 capacity
prediction based on physical property descriptors of ILs, such
as molecular weight, acentric factor, critical temperature,
critical pressure, and critical compressibility factor.51−53 For
comparison, models based on molecular structure descriptors
only need the structures of ILs and there is no need for the
aforementioned physical properties that may be unmeasurable
for most ILs.54 In order to study the quantitative structure−
property relationship (QSPR), ionic fragment contribution
based on group contribution (GC) was proposed by Huang et
al.55 and has been used for building ML models for gas
capture,56 including CO2 absorption,57 by dividing the
structures of ILs into fragments, including ionic fragments
(IFs) and neutral groups. Besides, the experimental data set
affects the accuracy of these data-driven models and the results
of judgments. However, the reported data on CO2 capture
capacity by functional ILs have yet to be fully leveraged for
building high-accuracy ML models. The development of such
models presents a unique opportunity and challenge as they
must extract meaningful patterns from a limited number of
examples.
In this work, four ML models based on the multilayer

perceptron (MLP) neural network, support vector regression
machine (SVR), random forest (RF), and gradient boosting
regression (GBR) have been constructed using molecular
structure descriptors to predict the CO2 capture by functional
ILs (Figure 2). First, we build an experimental data set based
on the summarizing of functional ILs for CO2 capture under
different temperatures and partial pressures in 2002 to 2025.
This extensive data bank contains 2500 experimental capacity
data points of CO2 capture as a function of operational
temperatures and pressures by 232 kinds of ILs including 44
cations and 123 anions. The total experimental data were
randomly divided into two data subsets, a training set with 80%
of total data and a test set with 20% of total data. Based on the
group contribution (GC), the structures of these ILs are
divided into 44 types of fragments. All 44 GC-based molecular
descriptors, temperature (T), and pressure (P) were used as
the input parameters, and the capture capacity was regarded as
the desired output parameter to establish the GC-MLP, GC-
SVR, GC-RF, and GC-GBR models. With feature importance
and SHAP analysis, these ML models provide an opportunity
to establish a quantitative structure−property relationship
between the capture capacity of CO2 and the structure of
functional ILs.

2. METHODOLOGY
Figure 3 illustrates the overall methodology of building
machine learning models in this work. First, data are gathered
from the literature, including the structures of ILs, the
operation temperature (T) and partial pressure (P), and the

corresponding CO2 capture capacities. Then, group contribu-
tion (GC) was selected as the molecular structure descriptors.
The input parameters consist of structure descriptors and
condition descriptors (T, P). The multilayer perceptron
(MLP) neural network, support vector regression (SVR),
random forest (RF), and gradient boosting regression (GBR)
are selected as the machine learning models. After training the
models with a training data set and optimizing models with
adjusting parameters, the machine learning models are built for
predicting CO2 capture capacity at given operation conditions
for ILs (Figure S1).
2.1. Data Gathering and Preprocessing. Based on the

summarizing of functional ILs for CO2 capture, the
experimental data set with 2500 experimental data points
about the capture capacity of CO2 by 232 kinds of ILs
including 44 cations and 123 anions were first collected from
59 literatures reported from 2002 to 2025. The summary of
this database is presented in Table 1. The structures and
abbreviations of 44 cations and 123 anions are listed in Figure
S2, while the full name of these 232 kinds of ILs can be found
in Table S1. Detailed information can be found in the Excel file
of the Supporting Information. To prevent features with wide
ranges from dominating the model and expedite the
algorithm’s convergence, a data preprocessing strategy was
implemented for standardization.58 The standardized data
aligns with the standard normal distribution using the equation
provided below:56

=x
x

scaler

where x represents the original data, xscaler is the preprocessed
data, μ is the mean value of samples, and σ is the standard
deviation of samples. In application, the StandardScaler (a
Python function) was initially fitted to the training set, and two
parameters (μ and σ) were readily obtained. Then, these same
parameters (μ and σ) were utilized to transform both the
training and the test sets. The values of μ and σ of samples are
listed in Table S2. This method guaranteed that the models
were trained and tested by using consistent standardized
criteria, enhancing the reliability and comparability of the
results. The training set encompassed 2000 data points (80%
of total data points), whereas the test set comprised 500 data

Figure 3. Overall methodology of building machine learning models.
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Table 1. Identification (ID) of IL, the Abbreviations of ILs, and the Number of Data Points (N) for Each CO2−IL System

ID IL N ID IL N ID IL N

1 [Bis(mim)C2][Gly]2 16 79 [N2224][4-Br-Im] 1 157 [P66614][2-Op] 19
2 [Bis(mim)C2][Im]2 14 80 [N2224][Ala] 1 158 [P66614][2-SCH3-BenIm] 19
3 [Bis(mim)C2][Pro]2 14 81 [N2224][BenIm] 4 159 [P66614][3-CF3-Pyrz] 41
4 [Bis(mim)C4][Gly]2 16 82 [N2224][Et2NCOCHCN] 1 160 [P66614][3-CH3−5-CF3-Pyrz] 10
5 [Bis(mim)C4][Im]2 57 83 [N2224][Im] 1 161 [P66614][3-Cl-PhO] 1
6 [Bis(mim)C4][Pro]2 15 84 [N2224][β-Ala] 1 162 [P66614][3-HMPz] 1
7 [Bmim][(CH3)2CHCOO] 9 85 [N4442][2-Op] 1 163 [P66614][3-N(CH3)2-PhO] 1
8 [Bmim][(CH3)3CCOO] 9 86 [N66614][Arg] 1 164 [P66614][3-OCH3−2-Op] 1
9 [Bmim][2-Op] 1 87 [N66614][Asn] 1 165 [P66614][3-Op] 1
10 [Bmim][Ac] 9 88 [N66614][Gln] 1 166 [P66614][4,5−2EF-Im] 1
11 [Bmim][Ala] 61 89 [N66614][His] 1 167 [P66614][4,5-CN-Im] 1
12 [Bmim][Arg] 4 90 [N66614][Lys] 1 168 [P66614][4-Br-Im] 1
13 [Bmim][CH3CH2COO] 9 91 [N66614][Met] 1 169 [P66614][4-CF3-PhO] 1
14 [Bmim][CH3COCH2CH2COO] 19 92 [NH2-emim][BF4] 18 170 [P66614][4-CH3-Im] 1
15 [Bmim][Gly] 56 93 [NH2-emim][CF3SO3] 18 171 [P66614][4-CH3O-PhO] 1
16 [Bmim][His] 4 94 [NH2-emim][N(CN)2] 18 172 [P66614][4-CH3-PhO] 1
17 [Bmim][IAAc] 9 95 [NH2-emim][PF6] 18 173 [P66614][4-CHO-Im] 10
18 [Bmim][Im] 13 96 [NH2-emim][Tf2N] 18 174 [P66614][4-CHO-PhO] 1
19 [Bmim][Leu] 3 97 [NH2-emmim][Tau] 19 175 [P66614][4-Cl-PhO] 3
20 [Bmim][Lys] 3 98 [NH2-pbim][BF4] 1 176 [P66614][4-EF-PhO] 1
21 [Bmim][Met] 4 99 [NH2-pmim][Im] 13 177 [P66614][4-Kt-PhO] 1
22 [Bmim][NH2COCH2CH2COO] 9 100 [OH-emim][Lys] 1 178 [P66614][4-NO2-Im] 1
23 [Bmim][Pro] 5 101 [OH-emmim][PhO] 1 179 [P66614][4-NO2-PhO] 1
24 [Bmim][TFA] 9 102 [P22212][2-CN-Pyrro] 10 180 [P66614][4-Op] 1
25 [Bmim][Val] 52 103 [P2224][1,2,4-Triz] 6 181 [P66614][5-HMPz] 1
26 [Bmim]2[IDA] 10 104 [P2224][2-CN-Pyrro] 7 182 [P66614][6-Br-BenIm] 50
27 [C1C4Pyr][Ac] 2 105 [P2228][2-CN-Pyrro] 15 183 [P66614][Ala] 3
28 [C1C4Pyr][2-Op] 1 106 [P2228][3-CF3-Pyrz] 7 184 [P66614][BenIm] 38
29 [Cho][Arg] 44 107 [P2228][3-CH3−5-CF3-Pyrz] 7 185 [P66614][BenTriz] 2
30 [Cho][Gln] 44 108 [P2228][4-NO2-Pyrz] 5 186 [P66614][CH(CN)2] 1
31 [Cho][Glu] 44 109 [P44412][2-CN-Pyrro] 8 187 [P66614][CH3C(CN)2] 1
32 [Cho][His] 44 110 [P44418][2-CN-Pyrro] 8 188 [P66614][CH3COCHCOCH3] 1
33 [Cho][Pro] 44 111 [P4442][2-Op] 1 189 [P66614][CH3SO2CHCN] 1
34 [Cho][Tyr] 44 112 [P4442][BenIm] 1 190 [P66614][Et2NCOCHCN] 6
35 [DEEDAH][Ac] 1 113 [P4442][CH(CN)2] 1 191 [P66614][Gly] 15
36 [DEEDAH][HCOO] 1 114 [P4442][DAA] 2 192 [P66614][Ile] 9
37 [DMAPAH][1,2,4-Triz] 1 115 [P4442][D-Ser-H] 1 193 [P66614][Im] 2
38 [DMAPAH][Ac] 1 116 [P4442][Gly] 1 194 [P66614][Ind] 40
39 [DMAPAH][HCOO] 1 117 [P4442][H-IDA] 1 195 [P66614][iPrCOCHCN] 1
40 [DMAPAH][Im] 1 118 [P4442][Im] 1 196 [P66614][Lys] 11
41 [DMAPAH][Pyrz] 1 119 [P4442][L-Ser-H] 1 197 [P66614][MA-Tetz] 1
42 [DMEDAH][1,2,4-Triz] 2 120 [P4442][Ph-Suc] 1 198 [P66614][Met] 14
43 [DMEDAH][HCOO] 1 121 [P4442][Suc] 26 199 [P66614][NH2CH2SO3] 1
44 [DMEDAH][Im] 2 122 [P4442]2[D-Ser] 1 200 [P66614][o-AA] 4
45 [DMEDAH][Pyrz] 2 123 [P4442]2[EDDA] 1 201 [P66614][o-ANA] 1
46 [Eeim][Ac] 52 124 [P4442]2[IDA] 31 202 [P66614][p-AA] 5
47 [Emim][1,2,4-Triz] 1 125 [P4442]2[l-HSer] 1 203 [P66614][p-ANA] 1
48 [Emim][Ac] 9 126 [P4442]2[L-Ser] 1 204 [P66614][PCCPhO] 1
49 [Emim][Im] 12 127 [P4442]3[NTA] 1 205 [P66614][PhCOCHCN] 1
50 [Emim][TFA] 9 128 [P4442-OH][2-Op] 1 206 [P66614][PhCOCHCOCH3] 1
51 [EMIM]10[DCP5] 1 129 [P4444][2-F-PhO] 36 207 [P66614][PhO] 4
52 [HO-emim][Im] 13 130 [P4444][3-F-PhO] 49 208 [P66614][PhSO2CHCN] 1
53 [Me2N(CH2CH2OH)2][Tau] 2 131 [P4444][4-F-PhO] 39 209 [P66614][PNNPhO] 13
54 [Me-C4mim][2-Op] 1 132 [P4444][Ac] 1 210 [P66614][PPhO] 1
55 [Me-C6mim][2-Op] 1 133 [P4444][Ala] 1 211 [P66614][Pro] 103
56 [Me-C8mim][2-Op] 1 134 [P4444][Bic] 1 212 [P66614][Pyrz] 1
57 [N1,1,10,2OH][Threo] 3 135 [P4444][CH(CN)2] 1 213 [P66614][Sar] 5
58 [N1,1,2OH,2OH][1,2,4-Triz] 24 136 [P4444][CH3CH2CH2COO] 1 214 [P66614][Tau] 6
59 [N1,1,4,2OH][Threo] 3 137 [P4444][CH3CH2COO] 1 215 [P66614][Tetz] 1
60 [N1,1,6,2O4][Lys] 3 138 [P4444][dmGly] 1 216 [P66614][β-Ala] 1
61 [N1,1,6,2OH][Tau] 3 139 [P4444][Gly] 1 217 [P66614]10[DCP5] 8
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points (20%), with the value of the random state set to be 512.
This division ensured no overlap between the training and test
data, preventing potential data leakage, and a specific random
state seed was assigned to guarantee reproducibility during
data splitting.
2.2. Construction of GC-Based Feature Descriptors.

Based on the group contribution (GC), the structures of
functional ILs applied for CO2 capture could be divided into
44 fragments, including ionic fragments (IFs), in this work.

The fragment codes, abbreviations, and their relevant
structures are given in Figure 4. Taking [NH2-emim]-
[PhCOCHCN] as an example, its structure could be divided
into 9 fragments: 1 [Im]+, 2 −CH2−, 1 −CH3, 1 −NH2, and 3
−H (ring) for the cation [NH2-emim], and 1 >C=O, 1
[−CH−]−, 1 −CN, 1 benzene ring, and 5 −H (ring) for the
anion [PhCOCHCN], as illustrated in Figure 5. Therefore, the
total fragments for [Im]+ (F 1), −CN (F 12), −CH3, (F 15),
−CH2− (F 16), [−CH−]− (F 17), −H (ring) (F 22), (F 27),

Table 1. continued

ID IL N ID IL N ID IL N

62 [N1,1,7,2OH][Threo] 3 140 [P4444][HCOO] 10 218 [P66614]2[AA-Ac] 1
63 [N1111][1,2,4-Triz] 1 141 [P4444][Ile] 1 219 [P66614]2[AA-Im] 1
64 [N1111][CH(CN)2] 13 142 [P4444][PhO] 43 220 [P66614]2[AA-Su] 1
65 [N1111][CH3NH(CH2)3COO] 14 143 [P4444][Pro] 1 221 [P66614]2[Am-iPA] 1
66 [N1111][Gly] 1 144 [P4444][Val] 1 222 [P66614]2[Asp] 25
67 [N1111][NH2(CH2)3COO] 10 145 [P4446][BenIm] 1 223 [P66614]2[DC] 8
68 [N1111][NH2(CH2)5COO] 39 146 [P4446][Et2NCOCHCN] 1 224 [P8884][2-Op] 1
69 [N111H][CH3CH2CH2COO] 55 147 [P4446][Im] 1 225 [Ph−C8eim][2-Op] 7
70 [N2221][Ala] 1 148 [P66614][1,2,4-Triz] 36 226 [VBIm][Ala] 44
71 [N2222][1,2,4-Triz] 1 149 [P66614][1-HDMPz] 1 227 [VBIm][Arg] 44
72 [N2222][Ac] 1 150 [P66614][1-HMPz] 1 228 [VBIm][Gly] 44
73 [N2222][Ala] 1 151 [P66614][1-Naph] 1 229 [VBIm][His] 44
74 [N2222][CH(CN)2] 53 152 [P66614][2,4,6-Cl-PhO] 1 230 [VBIm][Lys] 44
75 [N2222][PhCOO] 1 153 [P66614][2,4-Cl-PhO] 1 231 [VBIm][Pro] 44
76 [N2222][PhO] 1 154 [P66614][2-Cl-PhO] 1 232 [VBIm][Val] 44
77 [N2222][β-Ala] 1 155 [P66614][2-CN-Pyrro] 103
78 [N2224][1,2,3-Triz] 1 156 [P66614][2-Naph] 1

Figure 4. Fragment codes, abbreviations, and their relevant structures.
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benzene ring (F 29), and >C=O (F 30) of this IL are 1, 1, 1, 2,
1, 8, 1, 1, and 1, respectively.
2.3. Construction of GC-Based ML Models. 2.3.1. GC-

RF Model. The RF model combines multiple independent
decision trees and constructs a forest using a random approach,
which enhances the model’s generalization ability. For
regression, the final result is the average of each tree’s output
(Figure 6a). The RF model includes five key characteristics:
first, RF enhances generation capability while reducing load
and time; second, it is robust to missing data and maintains
accuracy; third, it reduces overfitting risk due to the use of

multiple decision trees; fourth, it provides variable importance
estimates, including which features are important for
prediction. Thus, RF has gained significant traction in the
process industry, environment, and structure−property
relationship-based property prediction over the past decades.
However, increasing the number of trees in the forest resulted
in longer prediction times.
2.3.2. GC-GBR Model. GBR is another type of ensemble

model, and its fundamental component is also decision trees.
Actually, GBR builds trees sequentially, meaning that GBR
generates trees one after another, and each tree corrects the
errors of its predecessor (Figure 6b). Generally, GBR exhibits
four distinct characteristics compared to RF: first, GBR
operates sequentially, whereas RF operates in parallel; second,
GBR’s calculation speed is generally slower than RF’s; third,
GBR is more susceptible to parameter adjustments, outliers,
and noise; fourth, GBR provides important variable estima-
tions due to its high approximation accuracy and execution
speed. Thus, GBR has been extensively used for classification
and regression tasks and in establishing prediction relation-
ships for structure−property applications.
2.3.3. GC-MLP Model. The MLP model is a feed-forward

ANN. It comprises an input layer, one or more hidden layers,
and an output layer. Data enters through the input layer,
undergoes processing in the hidden layers, and results in
predictions at the output layer (Figure 6c). Here, there are 46
neurons in the input layer, including 44 fragments, temper-
ature, and pressure, while one neuron is in the output layer.
Because two hidden layers can already satisfy the requirement
of using activation functions to represent an arbitrary decision
boundary with arbitrary accuracy as well as approximating any

Figure 5. Example of a fragment division.

Figure 6. Schematic diagrams of the GC-based optimized ML models. (a) GC-RF, (b) GC-GBR, (c) GC-MLP with two hidden layers and ReLU
activation, and (d) GC-SVR.
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smooth mapping to any precision, an MLP model with a (46-
NL1-NL2-1) architecture is used to predict the CO2 capture
capacity of ILs, where NL1 and NL2 are the neuron numbers for
the first hidden layer (L1) and the second hidden layer (L2),
respectively (details see the Supporting Information).
2.3.4. GC-SVR Model. The SVR model is grounded on the

principles of SVM, tailored to regression tasks. The
fundamental concept of SVR involves using mathematical
operations (kernel function) and creating nonlinear decision
boundaries, resulting in the disordered nonlinear points that
are rearranged into linear and divisible points (Figure 6d).
Thus, a hyperplane is obtained, and a majority of data points
reside within a specific margin from the plane. The
rearrangement process from a lower-dimensional nonlinear
space to a higher-dimensional linear space is termed mapping.
Subsequently, the regression task is carried out in the
reorganized, higher-dimensional linear space. The SVR
model, including a mapping and kernel function, is described
in detail in the Supporting Information.
2.4. Regression Evaluation Metrics and Parameter

Optimization. The coefficient of correlation (R2), mean
absolute error (MAE), mean squared error (MSE), root mean
squared error (RMSE), and average absolute relative deviation
(AARD) are five kinds of statistical parameters that have been
adopted as a true test for evaluating these models’ perform-
ance, and these metrics could be given by the following
equations,
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where i and N are the ith data point and the total number of
data points, respectively, and yexp, ypred, and −yexp are
experimental value, predicted value, and average experimental
value, respectively. A good machine learning model will give an
R2 that is very close to 1, while its MAE, MSE, and RMSE
values are close to 0. It is known that, not affected by extreme
errors, MAE is robust and less sensitive to outliers than MSE
or RMSE, which give more weight to large errors than small
ones. It should be noted that the units of R2, MAE, MSE,
RMSE, and AARD% are dimensionless, mol/kg, (mol/kg)2,
mol/kg, and %, respectively.
R2 Gap (ΔR2), MSE Ratio, and AARD% Increase are three

indicators for evaluating the degree of overfitting. ΔR2 and
AARD% Increase refer to the difference in performance
between the training set and test set, while the MSE Ratio
refers to the ratio of Training MSE to Test MSE. These
metrics can be given by the following equations:

=R R R RGap( ) Training Test2 2 2 2

=MSE Ratio Training MSE/Test MSE

=AARD%Increase Test AARD% Train AARD%
A small gap of R2 or AARD% (close to 0) indicates that the

model’s performance is consistent between the training and
test sets, indicating robust performance. A ratio of MSE (close
to 1) suggests that the model’s error is similar on both data
sets, indicating good generalization.
Parameter tuning is a crucial process in machine learning

and model performance optimization. There are several
methods for parameter optimization, and grid and random
searches are two common approaches used in model
evaluation. Figure 7 illustrates the grid search approach (in

two-dimensional space), random search approach (in two-
dimensional space), and 5-fold cross-validation for each
combination. The grid search operates on the principle of
exhaustively searching through a predefined set of parameter
values in order to determine which combination yields the
highest performance metric, while the random search explores
the parameter space by sampling a fixed number of parameter
combinations from specified distributions, offering a more
efficient approach, particularly in high-dimensional spaces
where the exhaustive search becomes computationally
prohibitive. Thus, the grid search employs a brute-force
approach and requires a significant amount of time to execute,
especially for a model with too many parameters and a large
search space. Besides, it is crucial to define the parameter
ranges within which each parameter will vary. These systematic
approaches guarantee the best results. Finally, the combination
of parameters that yields the best score is selected and can be
used for testing.
During the modeling process, k-fold cross-validation is

employed as an additional step to enhance the result reliability
(Figure 7b). This method involves initially dividing the data
into n equal groups. Subsequently, n − 1 groups are used for
training, while the remaining group is utilized for testing in the
model training process. This process is iterated n times to
ensure that all data is trained, ultimately yielding the MSE
score for the training set. This entire procedure is then
repeated k times with each repetition based on a different

Figure 7. An illustration of the grid search approach (a), random
search approach (b), and 5-fold cross-validation (c) for each
combination.
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random division of the data. By utilization of k various
partitions, this approach minimizes variance, and the perform-
ance estimation becomes less affected by the random division
of data. In this study, considering the limited data on the CO2
capacity in functional ILs (2000 data points for the training
set), we chose n to be 5 and k to be 5. Thus, 5-fold cross-
validation (cv = 5) is used in the model evaluation process for
evaluating the performance of models and optimizing their
parameters.59

3. RESULTS AND DISCUSSION
3.1. Data Analysis. Before the ML models were

constructed, the database was qualitatively analyzed. It is
clear that CO2 absorption capacity of ILs increases as
temperature decreases or pressure increases. Thus, high
pressure and low temperature favor the absorption of CO2 in
functional ILs. The data encompass a vast array of CO2
capacity measurements, ranging from 0.0037 to 10.421 mol/
kg, and span a wide spectrum of temperatures (283.1−393.15
K) and pressures (0.0004−20.006 bar). Table 2 and Figure 8
provide the distribution of experimental CO2 data points from
the database in the different ranges of CO2 partial pressures,
absorption temperatures, and absorption capacities with
distribution counts and percentages. It can be seen that most
data points, 63.84% and 66.84%, are in a narrow CO2 partial
pressure (in bar) range (0 < P ≤ 1) and absorption
temperature (in K) range (290 < T ≤ 320), respectively.
This highlights a significant research focus on the capture of
CO2 under mild conditions.
3.2. Model Parameter Optimization. 3.2.1. GC-MLP

Model Optimization and Performance. Four GC-based ML
models were developed in this study. For the GC-MLP model,
this study employs a four-layer feedforward neural network
architecture, comprising an input layer, two hidden layers, and
an output layer. The MLP model was implemented by using
sklearn in Python. It is known that too few neurons in hidden
layers will lead to underfitting, while too many neurons may

lead to overfitting. The grid search with the ReLU activation
function is used to optimize the number of neurons in each
hidden layer, and the neuron count spanning is [10, 110] with
an interval of 5. The initial value of the learning rate is set to
0.01 and 0.05. MSE is used to evaluate the performance. Thus,
882 combinations (21 × 21 × 2) were tested with cv = 5. It
can be seen that the optimized first hidden layer contains 95
neurons; the second hidden layer contains 45 neurons, and the
learning rate is set to 0.01, resulting in the lowest average MSE
(MSE = 0.1956). Thus, the architecture of the MLP model
with the ReLU activation function is 46−95−45−1. Besides,
the ANN model with one hidden layer was also studied. The
number of combinations was 42 (21 × 2), resulting in the
architectures of 46−15−1 (learning rate = 0.05, MSE =
0.862331). It is clear that the model with one hidden layer is
not suitable for prediction. Although the ANN model with
three hidden layers may obtain a little bit better result than the
model with two hidden layers, the search space 18522 (21 ×
21 × 21 × 2) is very large and requires a long computation
time. In most cases, two hidden layers are enough to establish
the correlations between model input and output.60 Therefore,
we choose two hidden layers in this work to construct the
MLP model. Furthermore, the comparative performance of
GC-MLP models with various activation function types,
including ReLU, Logistic, TanH, and Identity, has been
studied by a random search. The parameters of these models
can be found in Table S3, and the performance comparisons
were illustrated in Table 3 and Figures S3−S5. As seen for the
test set, TanH achieved the best performance on the test set in
terms of R2, MAE, MSE, and RMSE, while ReLU and Logistic
demonstrated moderate performance. Moreover, the elevated
AARD metric suggests the data noise and outliers. Besides, the
Identity performed extremely poorly across all metrics.
Therefore, TanH was considered in this work to construct
the MLP model.
3.2.2. GC-SVR Model Optimization and Performance. The

SVR model was implemented by using scikit-learn in Python.

Table 2. Number of Data Points (N) and Corresponding Percentage in Different Partial Pressure (P, in bar) Ranges,
Temperature (T, in K) Ranges, and Absorption Capacity Ranges (Z, in mol/kg) from the Literature

P (bar) N percent (%) T (K) N percent (%) Z (mol/kg) N percent (%)

0 < P ≤ 1 1596 63.84 280 < T ≤ 290 207 8.28 0 < Z ≤ 1 870 34.8
1 < P ≤ 2 315 12.6 290 < T ≤ 300 733 29.32 1 < Z ≤ 2 934 37.36
2 < P ≤ 3 171 6.84 300 < T ≤ 310 371 14.84 2 < Z ≤ 3 418 16.72
3 < P ≤ 4 169 6.76 310 < T ≤ 320 567 22.68 3 < Z ≤ 4 177 7.08
4 < P ≤ 5 41 1.64 320 < T ≤ 330 229 9.16 4 < Z ≤ 5 59 2.36
5 < P ≤ 6 25 1 330 < T ≤ 340 207 8.28 5 < Z ≤ 6 20 0.8
6 < P ≤ 7 31 1.24 340 < T ≤ 350 79 3.16 6 < Z ≤ 7 12 0.48
7 < P ≤ 8 31 1.24 350 < T ≤ 360 86 3.44 7 < Z ≤ 8 4 0.16
8 < P ≤ 9 24 0.96 360 < T ≤ 370 0 0 8 < Z ≤ 9 3 0.12
9 < P ≤ 10 30 1.2 370 < T ≤ 380 20 0.8 9 < Z ≤ 10 2 0.08
10 < P ≤ 11 15 0.6 380 < T ≤ 390 0 0 10 < Z 1 0.04
11 < P ≤ 12 0 0 390 < T 1 0.04
12 < P ≤ 13 14 0.56
13 < P ≤ 14 2 0.08
14 < P ≤ 15 12 0.48
15 < P ≤ 16 4 0.16
16 < P ≤ 17 0 0
17 < P ≤ 18 4 0.16
18 < P ≤ 19 0 0
19 < P ≤ 20 15 0.6
20 < P 1 0.04
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The optimal values for C, γ, d, r (coef0), and ε in SVR models
with different kernel functions, including Radial Basis Function
(RBF), Linear, Polynomial, and Sigmoid, are typically found
through systematic hyperparameter optimization techniques by
a random search with n_iter = 100 and cv = 5. The parameter
search ranges are as follows: [−3, 3] for log10C, [−5, 2] for

log10γ, (2, 3, 4) for d, (0.0, 0.1, 1.0) for r (coef0), and [0.001,
0.1] for ε. The parameters of these models with different
kernel types can be found in Table S4, and the performance
comparisons are illustrated in Table 4 and Figures S6−S8. For
the optimized GC-SVR model with the Linear kernel function,
the value of C was 0.1026 and the lowest average MSE of

Figure 8. CO2 capacity data of functional ILs collected from the literature and used in model training. (a) Projection of data points in the IL ID −
temperature (blue), IL ID − partial pressure (red), and temperature − partial pressure (green) plots. (b−d) Histogram distributions of
experimental CO2 data points from the database in different ranges of CO2 partial pressures, absorption temperatures, and absorption capacities
with distribution counts (left axis) and percentages (right axis).

Table 3. Statistical Indicator Comparison of GC-MLP Models with Various Activation Function Types

GC-MLP

metric ReLU (grid) ReLU (random) Logistic (random) TanH (random) Identity (random)

Test set R2 0.8439 0.8191 0.8084 0.8495 0.3974
MAE [mol/kg] 0.2541 0.2621 0.2633 0.2403 0.6393
MSE [(mol/kg)2] 0.2153 0.2495 0.2642 0.2075 0.8311
RMSE [mol/kg] 0.4640 0.4995 0.5140 0.4555 0.9116
AARD% 36.7336 38.3311 36.8485 43.1605 112.6054

Training set R2 0.9388 0.9334 0.9301 0.9321 0.4420
MAE [mol/kg] 0.1981 0.1967 0.1909 0.1807 0.6054
MSE [(mol/kg)2] 0.0895 0.0975 0.1023 0.0994 0.8166
RMSE [mol/kg] 0.2992 0.3122 0.3189 0.3153 0.9036
AARD% 31.8461 29.8929 31.7995 39.6505 134.3129

Overfitting R2 Gap (ΔR2) 0.0949 0.1143 0.1217 0.0826 0.0046
MSE Ratio 0.4157 0.3908 0.3872 0.4790 0.9825
AARD% Increase 4.8875 8.4382 5.0490 3.5100 −21.7075
Severity medium high high low underfitting
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1.0204 was obtained for the test set. Compared with GC-SVR
models with Linear and Sigmoid kernels, the performances of
models with RBF and Polynomial are better, and RBF (C =
34.8793, γ = 0.2120, ε = 0.0069) exhibited the best
performance of all (MSE = 0.2152). The log10C and log10γ
have been further optimized by a random search with n_iter =
10000 and cv = 5 based on ε = 0.0069, resulting in C =
41.2153, γ = 0.3064, and MSE = 0.2167. For comparison, they
also have been optimized by a grid search with 10000
candidates (100 × 100) and cv = 5, resulting in C = 46.415888,
γ = 0.284804, and MSE = 0.216972. These further
optimizations exhibited no significant improvement. Thus,
the former results were used for further comparison.
3.2.3. GC-RF Model Optimization and Performance. The

RF model is an ensemble ML algorithm comprising decision
trees with quantitative analysis capabilities. The optimal RF
model could be obtained through adjusting the number of
decision trees (n_estimators) and the maximum depth of the
tree (max_depth). In this study, the values of n_estimators and
max_depth are in the ranges of [50, 500) and [5, 15),
respectively, both with interval 1. After candidates (450 × 10)
were tested by grid search with cv = 5, the optimal model was
obtained with a max_depth of 14, an n_estimators of 499, and
a test set MSE of 0.1891. The results demonstrate a near-

perfect performance on the training data (R2 = 0.9775, MAE =
0.1154) but a significant drop in performance on the test set
(R2 = 0.8629, MAE = 0.2362), indicating the severe overfitting
of the model (MSE Ratio = 0.1740). Thus, further
optimizations of the parameters should be addressed to
overcome the issue. We named the original RF model as RF
Orig. and the optimized models as RF Opt. 1 ∼ 5.
The parameters of RF Orig. and RF Opt. 1 ∼ 5 models can

be found in Table S5, and the performance comparisons are
illustrated in Table 5 and Figures S9−S11. For RF Opt. 1, the
only significant change is the search strategy, shifting from a
computationally expensive grid search (450 × 10) combina-
tions to a more efficient random search with 100 iterations.
Although the number of estimators (n_estimators) sees a
trivial decrease from 499 to 449, the model’s predictive
capability and the overfitting problem are unchanged (test set
R2 = 0.8627, MSE Ratio = 0.1733) because the other
parameters (max_depth, max_features, min_samples_leaf,
min_samples_split) remain at their default. Therefore, the
GC-RF model was further optimized by introducing the
aforementioned regularization parameters, resulting in the RF
Opt. 2 model. The results showed that the test set R2 increased
to 0.8865 while the MSE Ratio decreased to 0.1591, indicating
that the test performance improved significantly and the

Table 4. Statistical Indicator Comparison of GC-SVR Models with Various Kernel Types

GC-SVR

metric RBF (grid) RBF (random) Linear (random) Polynomial (random) Sigmoid (random)

Test set R2 0.8008 0.8440 0.2601 0.7761 0.2766
MAE [mol/kg] 0.2312 0.2138 0.6169 0.2861 0.6190
MSE [(mol/kg)2] 0.2747 0.2152 1.0204 0.3088 0.9977
RMSE [mol/kg] 0.5241 0.4639 1.0101 0.5557 0.9989
AARD% 27.9603 32.3137 100.4916 40.4569 107.8958

Training set R2 0.9702 0.9383 0.3888 0.8726 0.3661
MAE [mol/kg] 0.0678 0.1268 0.5667 0.1956 0.5818
MSE [(mol/kg)2] 0.0436 0.0904 0.8945 0.1865 0.9277
RMSE [mol/kg] 0.2089 0.3006 0.9458 0.4318 0.9632
AARD% 12.3307 27.7841 104.7328 29.7616 126.8622

Overfitting R2 Gap (ΔR2) 0.1694 0.0943 0.1287 0.0965 0.0895
MSE Ratio 0.1587 0.4201 0.8766 0.6039 0.9298
AARD% Increase 15.6296 4.5296 −4.2412 10.6953 −18.9664
Severity severe moderate moderate moderate mild

Table 5. Statistical Indicator Comparison of the Original GC-RF Model (Orig.) with Different Further Optimized GC-RF
Models (Opt. 1−5)

GC-RF

metric Orig. Opt. 1 Opt. 2 Opt. 3 Opt. 4 Opt. 5

Test set R2 0.8629 0.8627 0.8865 0.7668 0.8823 0.8430
MAE [mol/kg] 0.2362 0.2362 0.2223 0.3471 0.2168 0.2706
MSE [(mol/kg)2] 0.1891 0.1893 0.1565 0.3216 0.1622 0.2165
RMSE [mol/kg] 0.4348 0.4351 0.3956 0.5671 0.4028 0.4653
AARD% 28.3162 38.4276 39.9657 73.3636 37.5583 52.6181

Training set R2 0.9775 0.9776 0.9830 0.8565 0.9872 0.9431
MAE [mol/kg] 0.1154 0.1155 0.0936 0.2834 0.0790 0.1744
MSE [(mol/kg)2] 0.0329 0.0328 0.0249 0.2100 0.0187 0.0833
RMSE [mol/kg] 0.1815 0.1812 0.1579 0.4582 0.1368 0.2886
AARD% 27.5241 32.4874 26.2136 88.5886 23.8670 51.2349

Overfitting R2 Gap (ΔR2) 0.1146 0.1149 0.0965 0.0897 0.1049 0.1001
MSE Ratio 0.1740 0.1733 0.1591 0.6529 0.1153 0.3847
AARD% Increase 0.7291 0.5492 13.7521 −15.2250 13.6913 1.3833
Severity severe severe moderate to severe moderate severe moderate
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overfitting gap decreased slightly. This is the result of three
parameters mutually constraining each other. The max_depth
and min_samples_split, higher than those of RF Orig. and RF
Opt. 1, refer to the more complex model, which will result in
overfitting. The max_features drastically reduced to 0.3181,
forcing each tree to consider only a random subset of features
(≈32%) for each split and making the model less likely to

overfit. Thus, RF Opt. 2 improved the performance but did not
fully solve the overfitting issue. Further optimized model RF
Opt. 3 with max_depth = 17 and max_features = 0.5662
results in the highest MSE Ratio of 0.6529 but lowest test set
R2 of 0.7668. This is not a desirable outcome. RF Opt. 4
synchronously increases both max_depth and max_features to
30 and 0.6084, respectively, resulting in a drastic increase in

Table 6. Statistical Indicator Comparison of the Original GC-GBR Model with Five Optimized Models

GC-GBR

metric Orig. Opt. 1 Opt. 2 Opt. 3 Opt. 4 Opt. 5

Test set R2 0.9186 0.9234 0.9158 0.8618 0.8836 0.8916
MAE [mol/kg] 0.1763 0.1766 0.1881 0.2551 0.2289 0.2261
MSE [(mol/kg)2] 0.1122 0.1056 0.1162 0.1906 0.1605 0.1494
RMSE [mol/kg] 0.3350 0.3250 0.3409 0.4366 0.4007 0.3866
AARD% 10.1582 26.9097 28.7527 45.1301 33.7770 39.1776

Training set R2 0.9989 0.9971 0.9915 0.9401 0.9637 0.9756
MAE [mol/kg] 0.0246 0.0431 0.0772 0.1790 0.1456 0.1217
MSE [(mol/kg)2] 0.0017 0.0042 0.0124 0.0876 0.0532 0.0357
RMSE [mol/kg] 0.0409 0.0651 0.1112 0.2960 0.2306 0.1889
AARD% 0.5321 8.8225 18.1337 46.3691 37.3513 32.6223

Overfitting R2 Gap (ΔR2) 0.0802 0.0737 0.0758 0.0783 0.0801 0.0840
MSE Ratio 0.0152 0.0398 0.1067 0.4596 0.3315 0.2390
AARD% Increase 9.6261 18.0872 10.6190 −1.2390 −3.5743 6.5553
Severity severe severe moderate to severe moderate moderate moderate to severe

Figure 9. Comparison of the selected GC-based ML models for predicting CO2 capacities. (a) GC-MLP with TanH activation function, (b) GC-
SVR with RBF kernel, (c) GC-RF, and (d) GC-GBR.
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performance (test set R2 = 0.8823) and a consequent return of
overfitting (MSE Ratio = 0.1153). In order to seek a middle
ground between the high-performance but overfit model (RF
Opt. 4) and the well-generalized but underfit model (RF Opt.
3), mild constraints were introduced, and RF Opt. 5 was
obtained with test set R2 = 0.8430 and MSE Ratio = 0.3847.
Therefore, RF Opt. 5 was selected for further study.
3.2.4. GC-GBR Model Optimization and Performance.

Different from the RF model, the GBR model constructs
additive regression models by sequentially fitting simple
decision trees based on the residuals at each iteration. In the
beginning, the values of n_estimators and max_depth are
selected for optimization in the same range [50, 500) and [5,
15), respectively, with interval 1 and cv = 5. After candidates
(450 × 10) were tested by a grid search, the optimal model

was obtained with a max_depth of 7, an n_estimators of 499,
and a test set MSE of 0.1122. A reasonable speculation is that
increasing the number of trees can reduce max_depth and
achieve good accuracy. However, the R2 Gap (ΔR2) of ∼0.08
and an extremely low MSE Ratio of 0.0152 confirm a severe
overfitting issue. The model had memorized the training data
almost perfectly (training set R2 = 0.9989) but failed to
generalize equally well to the unseen test data (test set R2 =
0.9186). Therefore, a re-evaluation is necessary and has been
performed. It should be noted that the purpose of adjusting
parameters (e.g., learning_rate, max_depth, min_samples_leaf,
min_samples_split, n_iter_no_change, validation_fraction,
and subsample) is the relentless pursuit of an optimal trade-
off: mitigating the model’s pronounced overfitting while
preserving, or even enhancing, its predictive performance on

Table 7. Statistical Indicator Comparison of Selected GC-Based ML Models

ML model data set R2 MAE[mol/kg] MSE[(mol/kg)2] RMSE[mol/kg] AARD%

GC-MLP (TanH) Training set 0.9321 0.1807 0.0994 0.3153 39.6505
Test set 0.8495 0.2403 0.2075 0.4555 43.1605

GC-SVR (RBF) Training set 0.9383 0.1268 0.0904 0.3006 27.7841
Test set 0.8440 0.2138 0.2152 0.4639 32.3137

GC-RF (Opt. 5) Training set 0.9431 0.1744 0.0833 0.2886 51.2349
Test set 0.8430 0.2706 0.2165 0.4653 52.6181

GC-GBR (Opt. 4) Training set 0.9637 0.1456 0.0532 0.2306 37.3513
Test set 0.8836 0.2289 0.1605 0.4007 33.7770

Figure 10. Distribution of the predicted errors in the training and test sets using selected GC-ML models: (a) GC-MLP with the TanH activation
function, (b) GC-SVR with RBF kernel, (c) GC-RF, and (d) GC-GBR.
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unseen data. We named the original GBR model GBR Orig.
and the optimized models GBR Opt. 1 ∼ 5.
The parameters of GBR Orig. and GBR Opt. 1 ∼ 5 models

can be found in Table S6, and the performance comparisons
are illustrated in Table 6 and Figures S12−S14. Based on the
similar metrics, it can be seen from the results of GBR Orig.
and GBR Opt. 1 that shifting from an exhaustive grid search
over a massive 450 × 10 parameter space to a more efficient
random search with 100 iterations allows for a broader
exploration of the hyperparameter space with less computa-
tional cost. Therefore, random research was used for further
optimization. Besides, a higher learning_rate allows each tree
to contribute more, often leading to models that require fewer
trees, while an increased min_samples_split makes it harder for
the model to split nodes, thus creating simpler trees. Thus, the
MSE Ratio of 0.1067 was obtained by GBR Opt. 2, which was
7 times that of GBR Orig. In the model GBR Opt. 3 ∼ 5, early
stopping parameters, including n_iter_no_change = 15, tol =
0.00001, and validation_fraction = 0.2, were introduced, which
is the most important change in the optimization. Instead of
predefining the number of trees (n_estimators), the algorithm
now uses a held-out validation set (20% of the training data) to
stop adding trees once performance on this validation set fails
to improve by at least tol for 15 consecutive rounds. This
directly combats overfitting by preventing the model from
learning noise after a certain point. As expected with such a
strong regularization, the effect is immediate and noticeable.
For GBR Opt. 3, the MSE Ratio increased to 0.4596, but the
test performance R2 dropped significantly from 0.9158 to
0.8618. After further reducing validation_fraction from 0.2 to
0.1 and increasing learning_rate from 0.0708 to 0.1290, the
models GBR Opt. 4 and GBR Opt. 5 changed slightly more
powerful and less constrained. Based on the metrics of these
two models, GBR Opt. 4 with a test set R2 of 0.8863 and an
MSE Ratio of 0.3315 is better than GBR Opt. 5 (test set R2 =
0.8916, MSE Ratio = 0.2390). Therefore, GBR Opt. 4 was
chosen for further study.
3.3. Model Performance Evaluation. 3.3.1. Predicted

CO2 Capacities. Following the development of four GC-based
ML models, a systematic performance evaluation was
conducted based on a comparative analysis. Figure 9 illustrates
the comparison of the different GC-based ML models for the
training set and test set splinted from the whole database
randomly in different models. It is known that y = x is the ideal
regression line, where x is the experimental CO2 capacities and
y is the predicted CO2 capacities by different models. Thus,
enhanced model accuracy according to the order GC-MLP
(TanH) < GC-RF (Opt. 5) < GC-SVR (RBF) < GC-GBR
(Opt. 4) was evidenced by data points converging toward the y
= x ideal regression line, where improved clustering along this
diagonal corresponds to higher predictive fidelity. Such
behavior directly correlates with the data set’s correlation
coefficient (R2), serving as a quantitative indicator of model
efficacy. In Table 7, where the comprehensive performance
metrics for GC-based ML models are tabulated, the
comparative analysis revealed the GC-GBR model’s superior
predictive capability, achieving the highest R2 values, 0.9637
for the training set and 0.8836 for the test set. The results
suggested that the GC-GBR model confirms exceptional
concordance between computational projections and exper-
imental observations. These results are confirmed by the
residual analysis (see the Supporting Information for details).

Additionally, a comparison of the frequency distributions of
errors between the predicted and experimental CO2 capacity
values in the training set and test set by the developed different
GC-based ML models is presented in Figure 10, where the
vertical axis shows the number of data points for each variable’s
specific range (horizontal axis). It can be seen that 80.5, 85.5,
79.8, and 84.2% training errors and 73.8, 77.0, 67.6, and 72%
test errors are inside the range of [−0.25, 0.25] by GC-MLP
with TanH activation, GC-SVR with RBF kernel, GC-RF, and
GC-GBR models, respectively. These results demonstrate that
the GC-GBR model has high accuracy and reliability to predict
the CO2 capacities of functional ILs.
3.3.2. Comparison of Predicted Capacity with Thermody-

namic Equations. To obtain a more thorough grasp of these
models, it is important to present a comparison of
experimental and predicted CO2 capacity data by different
GC-based ML models and thermodynamic methods. CO2
capture by typical ILs, such as amine-based IL [Bmim][Ala]
and amine-free IL [P66614][2-CN-Pyrro], under different
partial pressures is applied to evaluate these ML models. The
results are illustrated in Figure 11, and the corresponding
thermodynamic equation (“deactivated model”) for the
absorptions of these ILs in detail can be found in the
Supporting Information and references.61,62 It is evident that

Figure 11. Comparison of experimental data (exp.) and predicted
data (pred.) by selected GC-based ML models with thermodynamic
methods (fitting lines) for CO2 capture by (a) [Bmim][Ala] and (b)
[P66614][2-CN-Pyrro].
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the predicted data from all these ML models demonstrate
consistent trends of change in these ILs, aligning well with the
experimental data and conforming to the general strong
interaction between CO2 and active sites reported in previous
works, where the CO2 capacity increases with pressure at a
constant temperature. Among these GC-based ML models, it is
clear to see that the GC-GBR model can simulate the
experimental data precisely.
3.3.3. Feature Importance and SHAP Analysis. The feature

importance analysis reveals the key descriptors that the model
identified as most predictive for the CO2 absorption capacity.
Feature importance is calculated as the mean reduction in
impurity (e.g., MSE) achieved by splits using each feature
across all trees in the ensemble. In contrast, the SHapley
Additive exPlanations (SHAP) plot is obtained by calculating
the marginal contribution of each feature to every individual
prediction relative to a baseline average, providing a deep
insight into how each feature influences the model’s
predictions. The results from the GC-GBR model (GBR
Opt. 4) are illustrated in Figure 12. The importance
distribution is highly nonuniform, indicating that a small
subset of features dominates the predictive power of the
model. The top five features (P, T, F 15, F 16, and F 19)
account for a significantly larger share of the total importance,
suggesting that the capacity is primarily driven by a few critical
properties or conditions. The operating conditions P
(Importance = 0.2169) and T (Importance = 0.1449) are
among the most influential features. The SHAP plot shows a
strong positive correlation for P and a strong negative
correlation for T, which means that high pressure values (red
dots) are associated with positive SHAP values, while high
temperature values (red dots) are associated with negative
SHAP values. The results indicated that increased pressure
causes CO2 capture, while increased thermal energy promotes
desorption. Interestingly, saturated aliphatic groups, such as F
15 (−CH3) and F 16 (−CH2−), are assigned high importance.
However, the SHAP plot reveals that this is a spurious

correlation. The SHAP plot for F15 (−CH3), F16 (−CH2−),
F19 (=CH2), F17 (>CH−), F20 (=CH−), and F22 (−H,
ring) shows clearly that high counts (red dots) are clustered on
the left, in the negative SHAP value region. This indicates that
the model has learned the association between abundant
aliphatic chains and lower CO2 absorption capacity by using
them as proxies for poor performance. In contrast, F29
(−NH2) with Importance = 0.0129 exhibits the opposite
behavior: high counts (red dots) are associated with positive
SHAP values. Thus, the model correctly identifies that an
increasing number of amine groups increases the predicted
CO2 capacity. This is a pivotal finding. The model has learned
a logically consistent hierarchy that abundant inert, saturated
carbon−hydrogen groups are the strongest indicators of low
performance, while the amine group is the key indicator of
high performance. The results move the model beyond a mere
“statistical black-box” to an interpretable tool that aligns with
chemical intuition.

4. CONCLUSIONS
This study established an efficient and rapid approach to
predict the CO2 capture capacity by functional ionic liquid
(IL). Initially, we summarized the structures of functional ILs
and established an extensive data bank containing 2500
experimental capacity data points of CO2 capture as a function
of operational pressure (P) and temperature (T) by 232 ILs
including 44 cations and 123 anions. Based on 44 types of
fragments, including ionic fragments (IFs), four group
contribution (GC) based ML regression models, GC-MLP,
GC-SVR, GC-RF, and GC-GBR, were developed. A combina-
tion of 5-fold cross-validation and grid search/random search
was employed as an effective way to optimize model
parameters and enhance their performance. Besides, managing
the trade-off between model complexity and generalization
performance is a fundamental challenge. GC-based MLP with
TanH, SVR with RBF, RF Opt. 5, and GBR Opt. 4 are four
ML models, representing a good balance between complexity

Figure 12. Feature importance data (a) and SHAP plots (b) of the GC-GBR model (GBR Opt. 4).
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and performance. Among these models, the GC-GBR model
demonstrated the strongest predictive ability. Using the
optimized GC-GBR model (GBR Opt. 4) with lower
overfitting, superior accuracy was achieved on the training
set (R2 = 0.9637, MAE = 0.1456, MSE = 0.0532, RMSE =
0.2306, AARD% = 37.35%) and the test set (R2 = 0.8836,
MAE = 0.2289, MSE = 0.1605, RMSE = 0.4007, AARD% =
33.78%). Beyond its predictive performance, the GC-GBR
model offered valuable interpretability through the SHAP
analysis. This analysis revealed that higher pressure and lower
temperature increased CO2 capacity. It also identified that
abundant aliphatic groups served as indicators of lower
absorption capacity, whereas the amine group was correctly
recognized as a key promoter of higher CO2 uptake. The GBR-
SHAP analysis transitions the model from a black-box
predictor to an interpretable tool that can guide molecular
design. Furthermore, typical ILs [Bmim][Ala] and
[P66614][2-CN-Pyrro] are selected to compare the exper-
imental and predicted CO2 capacity data by different IF-based
ML models and thermodynamic methods, and the predictions
of the GC-GBR model are in excellent agreement with both
the experimental data and the thermodynamic fitting curve.
This is the first time that GBR-SHAP has been used for
analysis of CO2 capture performance by functional ILs, and we
hope that these GC-based ML models could be used to
develop functional ILs in the future for efficient CO2 capture.
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