

Hydrothermal-treated Pt/Al2O3 as an excellent catalyst for toluene total oxidation

*Xiao Chen, Yong Wang, Jianyu Li, Zhongheng Hu, Ying Zhou, Huayan Liu, Hanfeng Lu***[∗]**

Institute of Catalytic Reaction Engineering, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China

a r t i c l e i n f o

Article history: Received 27 February 2021 Revised 26 June 2021 Accepted 28 June 2021 Available online 11 January 2022

Keywords: $Pt/Al₂O₃$ Calcination activation Hydrothermal activation AlO(OH) Catalytic combustion of toluene

a b s t r a c t

The preparation of highly active supported noble metal catalysts with a low noble metal loading has always been the ultimate goal of researchers working on catalysis. Hydrothermally treated Pt/Al₂O₃ (Pt/Al₂O₃-H) exhibits better catalytic activity than that (Pt/Al₂O₃-C) treated via the conventional calcination approach. At the high space velocity of 100,000 mL/(g•hr), the temperature that correspond to 50% toluene conversion (T_{50}) of Pt/Al₂O₃-H is 115°C lower than that of Pt/Al₂O₃-C, and the turnover frequency (TOF) value can reach 0.0756 sec−1. The mechanism by which the hydrothermal approach enhances Pt/Al_2O_3 activity has been investigated. The structure associated with the high catalytic activity of Pt nanoparticles (NPs) can be retained via hydrothermal treatment. Furthermore, the support is transformed to AlO(OH) with numerous surface hydroxyl groups, which in turn can facilitate the adsorption of toluene. And the synergistic effects of Pt NPs and AlO(OH) increases the contents of Pt in oxidation state and active oxygen, which are beneficial for toluene oxidation.

© 2022 The Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences. Published by Elsevier B.V.

Introduction

Catalytic combustion of volatile organic compounds (VOCs) is an efficient and energy-saving process for VOCs elimination (Lu et al., [2015;](#page-9-0) [Scirè and](#page-9-0) Liotta, 2012; Xie et al., [2016\)](#page-9-0). Catalysts are at the heart of the catalytic combustion technology, which include supported noble metal catalysts (e.g., Pt, Pd, and Ru) and non-noble metal catalysts based on transition metals and rare earth metals (e.g., Mn, Cu, Co, Fe, and Ce) [\(Chen](#page-8-0) et al., 2018, [2017b;](#page-8-0) [Garcia](#page-8-0) et al., 2006; Genuino et al., 2012; Gu et al., [2017;](#page-8-0) [Pitkäaho](#page-8-0) et al., 2012; Tang et al., [2014\)](#page-9-0). Although noble metals are scarce and expensive, supported noble metal catalysts, especially Pt-based catalysts, remain

the primary catalytic materials in practical applications owing to their superior catalytic activity, selectivity, and universality [\(Wang](#page-9-0) et al., 2020c; [Zhang](#page-9-0) et al., 2020, [2019\)](#page-9-0). Various supported noble metal catalysts that are highly active for VOCs combustion have been developed. Many supported Pt catalysts can achieve complete toluene conversion at tempera-tures (T₉₀) below 200°C [\(Huang](#page-8-0) et al., 2020; [Kondratowicz](#page-8-0) et al., 2020; Lin et al., [2020;](#page-9-0) Lu et al., [2019;](#page-9-0) Pei et al., [2019;](#page-9-0) Rui et al., 2017; [Yang](#page-9-0) et al., 2020, [2016;](#page-9-0) [Zhang](#page-9-0) et al., 2018; Zou et al., 2020a, [2020b\)](#page-10-0). However, [researchers](#page-10-0) are further developing existing Pt catalysts that can completely convert toluene at lower temperatures to save on energy and ensure safety in practical applications. However, only a few the supported noble metal catalysts that can achieve complete toluene conversion at temperatures below 150°C, especially at high space velocities (no less than 100,000 mL/(g•hr)), have been reported.

<https://doi.org/10.1016/j.jes.2021.06.031>

1001-0742/© 2022 The Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences. Published by Elsevier B.V.

[∗] Corresponding author.

E-mail: luhf@zjut.edu.cn (H. Lu).

In addition, most of these catalysts attain such high activities under high noble metal loading (no less than 1 wt.%) [\(Huang](#page-8-0) et al., 2020; Lu et al., [2019;](#page-9-0) Zou et al., [2020a\)](#page-10-0). Therefore, an obvious bottleneck in supported noble metal catalysts research is how to achieve high activity under low noble metal [loading](#page-9-0) (Chen et al., [2019b;](#page-8-0) [Huang](#page-8-0) et al., 2015; Sasaki et al., 2020; Wang et al., [2020b\)](#page-9-0).

The impregnation method is a simple and widely used method for preparing supported noble metal catalysts (He et al., [2020;](#page-8-0) Sun et al., [2020;](#page-9-0) Zhu et al., [2018\)](#page-10-0). In general, the performance of catalysts prepared via this method largely depends on the nature and characteristics of the support. By constructing a suitable support, an efficient supported noble metal catalyst can be prepared. Previous studies established that the size and dispersion of noble metals are crucial in determining the performance of supported noble metal catalysts (Chen et al., [2019a;](#page-8-0) Lai et al., [2014;](#page-8-0) Zhao et al., [2020b\)](#page-9-0). Hence, only the nature of the support is considered in preparing supported noble metal catalysts, whereas the active structure of the noble metal is passively formed, thereby severely limiting the performance of catalysts. An ideal solution to enhancing catalytic activity is by preparing supported noble metal catalysts with controllable noble metals and supports. The colloid deposition method is a recently developed method for preparing inexpensive and highly active supported noble metal catalysts (Gan et al., [2019;](#page-8-0) Hashmi and [Hutchings,](#page-8-0) 2006; Li et al., 2019). This method involves [preforming](#page-8-0) noble metal nanoparticles (NPs) and depositing them on a specific support to form a supported noble metal catalyst. Via this method, the size and dispersion of preformed noble metal NPs can be effectively controlled, a feature that is beneficial to constructing highly active catalysts. Effective size and dispersion control can be achieved during colloid preparation by adding surfactants [\(Chen](#page-8-0) et al., 1999; [Hirai](#page-8-0) et al., 1978). However, the presence of the surfactants is detrimental to catalytic activity. Consequently, the catalysts prepared via the colloid deposition method must be activated before they are used. The purpose of activation is to remove the surfactants to expose active sites. Current methods for catalyst activation typically involve thermal and oxidative treatments, which can affect the size or morphology of the noble metal NPs, in turn suppressing their catalytic activity [\(Chen](#page-8-0) et al., 2020; [Goodman](#page-8-0) et al., 2019; Jia and [Schüth,](#page-8-0) 2011; Wen et al., [2008;](#page-9-0) Yin et al., [2010;](#page-9-0) [Zhou](#page-9-0) et al., 2009). Nevertheless, only the size and morphology of noble metal NPs are controlled, the performance of the catalyst can hardly be greatly improved by relying only on the activity of the noble metal NPs. Studies prove that the synergistic effects of noble metal NPs and supports are also crucial in determining catalyst [performance](#page-9-0) [\(Boudart,](#page-8-0) 1969; Waqas et al., 2020; Zou et al., [2020b\)](#page-10-0). So, in the activation process, while controlling the structure of the noble metal NPs, if the support of catalyst can also form a structure conducive to the reaction and assist in expressing the activity of noble metal NPs, it is very likely to considerably enhance the catalyst performance.

 Al_2O_3 can be transformed into AlO(OH) with the special morphology and the abundant surface hydroxyl groups under [hydrothermal](#page-8-0) condition [\(Kozerozhets](#page-8-0) et al., 2020; Li et al., 2010; Prorok and [Madej,](#page-9-0) 2020). These features of AlO(OH) are beneficial to the catalytic [combustion](#page-8-0) of VOCs (Belskaya et al., 2019; Cai et al., [2010;](#page-8-0) Chen et al., [2017a,](#page-8-0) [2017b;](#page-8-0) Xu et al., [2015\)](#page-9-0).

Moreover, given that hydrothermal activation does not require further thermal treatment, the structure of noble metal NPs can be retained. In this study, Pt/Al_2O_3 were prepared via colloid deposition method. An innovation of this study was that the Pt/Al₂O₃ was activated via the hydrothermal approach to successfully prepare a highly efficient catalyst. The activity of the Pt/Al_2O_3 activated via the hydrothermal approach was substantially better than that of the catalyst prepared via traditional calcination activation. At the high space velocity of 100,000 mL/(g•hr), the T_{90} was only 150°C. The mechanism by which the hydrothermal approach activates the Pt/Al_2O_3 was determined and characterized via several approaches. This work reports a highly efficient Pt-based catalyst with low Pt loading. The results may provide insights into the design of highly efficient and inexpensive Pt-based catalysts.

1. Materials and methods

1.1. Chemical agents

Chloroplatinic acid hexahydrate $(H_2PtCl_6 \cdot 6H_2O)$ was purchased Shanghai Aladdin Biochemical Technology Co., Ltd. Ascorbic acid $(C_6H_8O_6)$ was purchased Shanghai Aladdin Biochemical Technology Co., Ltd. Polyvinylpyrrolidone ((C6H9NO)*n*, PVP) was purchased Shanghai Aladdin Biochemical Technology Co., Ltd. Ethylene glycol $(C_2H_6O_2)$ was Shanghai Lingfeng Chemical Reagent Co., Ltd. Acetone (C_3H_6O) was purchased Hangzhou Shuanglin Chemical Reagent Co., Ltd. Ethanol (C_2H_6O) was purchased Anhui Ante Food Co., Ltd. Aluminum nitrate nonahydrate $(Al(NO₃)₃•9H₂O)$ was purchased Sinopharm Chemical Reagent Co., Ltd. Ammonia solution (NH₃ \cdot H₂O) was purchased Sinopharm Chemical Reagent Co., Ltd.

1.2. Catalyst preparation

Synthesis of Pt nanoparticle colloids: 0.03 g chloroplatinic acid hexahydrate, 1 g ascorbic acid and 0.9 g polyvinylpyrrolidone were mixed with 40 mL ethylene glycol in a three-necked flask. The mixture was heated to 180°C for 1 hr with magnetically stirred. After the reaction, acetone was added to the cooled solution to induce the precipitation of the nanoparticles, which were separated from the solvent by centrifugation at 8000 r/min for 10 min. The precipitation dispersed in ethanol, and then repeat the above operations several times. Finally, the resulting precipitation re-dispersed in 18 mL ethanol to form Pt nanoparticle colloids.

Pretreatment of Al_2O_3 support: 11.25 g $Al(NO_3)_3 \cdot 9H_2O$ was dissolved in 30 mL distilled water, and the PH was adjusted to 10 by using the NH₃•H₂O solution (1 mol/L). After constant stirring for 2 hr at room temperature, the precipitation was separated from the solvent by pumping filtration. The precipitation was washed several times with distilled water, and then dried at 110°C for 12 hr. The resultant solid calcined at 500°C for 3 hr in the air atmosphere was denoted as Al_2O_3 .

Preparation of Pt/Al₂O₃ catalyst: 1 g Al₂O₃ and 8 mL Pt nanoparticle colloids were mixed with 10 mL ethanol. After constant stirring for 1 hr at room temperature, the mixture was allowed to stand overnight. The solid separated from the mixture by pumping filtration, and then dried at 110°C for 2 hr was denoted as Pt/Al_2O_3 (theoretical Pt content: 0.5 wt.%). According to the different surfactant removal technology, the resultant catalysts were denoted as Pt/Al_2O_3 -C and Pt/Al_2O_3 -H, respectively.

Pt/Al₂O₃-C (calcination activation): Pt/Al₂O₃ was calcined at 400°C for 3 hr in the air atmosphere.

Pt/Al₂O₃-C (hydrothermal activation): Pt/Al₂O₃ was added to distilled water. After constant stirring at 90°C for 3 hr, the solid separated from the mixture by pumping filtration, and then dried at 110°C for 12 hr.

1.3. Catalyst characterization

Transmission electron microscope (Tecnai F30 S-Twin, Philips-FEI, Holland) working at 300 kV was used for transmission electron microscopy (TEM).

Scanning electron microscopy (SEM) images and energy dispersive spectrometer (EDS) were obtained on the scanning electron microscope (S-4700(II), Hitachi, Japan) operating at 15.0 kV.

X-ray diffraction (XRD) patterns were recorded on the diffractometer instrument (X'Pert PRO, Panalytical, Holland) operated at 40 kV and 30 mA, with Cu *K*α-ray radiation ($\lambda = 1.54178$ Å). Scans were taken with a 2 θ range from 10° to 80°.

 N_2 adsorption-desorption isotherms of the samples were carried out at 77 K on the instrument (ASAP2020, Micromeritics, USA). The specific surface areas and the mesopore sizes of the samples were calculated using the Brunauer-Emmett-Teller (BET) and Barrett-Joyner-Halenda (BJH) method, respectively. All samples were pre-treated in vacuum at 200°C for 5 hr before measurements.

Raman spectra were acquired using a Raman spectrometer (HR 800 Lab RAM, Horiba Jobin Yvon, France) equipped with a 531.95 nm laser (frequency-doubled Nd:YAG, 20 mW).

X-ray photoelectron spectroscopy (XPS) was performed to identify the valence states and surface composition of the catalysts on the spectrometer (AXIS Ultra DLD, Kratos, England). The analysis system used a monochromatic Al *K*a (1486.6 eV) X-ray source, and the pressure was kept below 5×10^{-7} Torr. The C 1 s peak (284.6 eV) was used to calibrate the binding energy (BE).

1.4. Catalytic performance test

Combustion of toluene activity over these catalysts was evaluated with a continuous flow-fixed bed reactor. The feed gas composed of 2500 ppmV toluene and balance standard air with a weight hourly space velocity (WHSV) of 100,000 mL/(g•hr), where the toluene was generated by bubbling standard air through a bottle contained pure toluene placed in an ice-water bath (0°C). The concentrations of the toluene were detected by a gas chromatograph (GC-2014, Shi-MadZu, Japan) equipped with flame ionization detector (FID). The conversion rate of toluene was obtained on the basis of toluene consumption, calculated by the inlet and outlet concentrations of toluene.

Fig. 1 – Toluene conversion as a function of temperature over the Pt/Al2O3-C (calcination activation) and Pt/Al2O3-H (hydrothermal activation). Reaction conditions: 2500 ppmV toluene, weight hour space velocity (WHSV) 100,000 mL/(g·hr). $\triangle T_{50}$: the temperature that correspond to **50% toluene conversion.**

Based on conversion rate of toluene, turnover frequency (TOF) was calculated by Eq. (1):

$$
TOF = X_{toluene} \times F_{toluene} \times M_{Pt} / (m_{cat} \times X_{Pt} \times D_{Pt})
$$
 (1)

where *X*_{toluene} is the conversion rate of toluene, F_{toluene} (mol/sec) is the flow rate of toluene, M_{Pt} (g/mol) is the molar mass of Pt, m_{cat} (g) is the mass of catalyst, X_{Pt} is the Pt content of catalyst, D_{Pt} is the Pt dispersion.

2. Results and discussion

2.1. Catalytic performance of Pt/Al2O3-C and Pt/Al2O3-H

The toluene catalytic combustion performance of Pt/Al_2O_3 activated by different approaches is depicted in **Fig. 1**. As shown in **Figs. S1** and **S2**, the two approaches can effectively remove the PVP absorbed on Pt/Al₂O₃. Pt/Al₂O₃-H showed a better toluene catalytic combustion activity. Compared with Pt/Al₂O₃-C, the T₅₀ of Pt/Al₂O₃-H decreased by 115°C. The T₉₀ of Pt/Al₂O₃-H is only 150°C. Notably, the activity of Pt/Al₂O₃-H was better than that of most Pt-based catalysts (even with higher Pt contents) reported in the literature (**[Table](#page-3-0) 1**). The value of TOF (**Table S1**), which was calculated with the dispersion of Pt loading on the support, over Pt/Al_2O_3-H and Pt/Al₂O₃-C was 0.0756 sec⁻¹ at 130°C and 0.0468 sec⁻¹ at 220°C, respectively, indicating that the active site on Pt/Al_2O_3-H had a higher catalytic ability. Compared with the catalyst activated via calcination, the Pt/Al₂O₃ activated via hydrothermal approach was more conductive to activity expression. In addition, as shown in **Fig. S3**, the toluene could also be completely oxidated to the $CO₂$ and $H₂O$ over Pt/Al₂O₃-H.

Stability is another important indicator that measures catalyst performance. The stability of the Pt/Al_2O_3 -H for toluene combustion was evaluated. As shown in [Fig.](#page-3-0) 2a, the Pt/Al₂O₃-H exhibited similar catalytic activity within five reaction cy-

ZSM-5-OS: ellipsoidal ZSM-5 nanozeolit; ZF-D: pore-modified ZSM-5 foam; TiNT: TiO₂ nanotube arrays; MOR: mordenite; 3DOM Al₂O₃: threedimensionally ordered macro-/mesoporous alumina; PA: platinum(II) acetylacetonate; CP: chloroplatinic acid; Pt-I: impregnation used for modification with Pt; Pt-G: polyol process used for modification with Pt.

Fig. 2 - (a) Cycle test of Pt/Al₂O₃-H for toluene catalytic combustion; (b) Stability test of Pt/Al₂O₃-H for toluene catalytic **combustion at ¹⁵⁰**°**C. Reaction conditions: ²⁵⁰⁰ ppmV toluene, WHSV=100,000 mL/(g**•**hr).**

cles, indicating the high stability of the Pt/Al_2O_3-H for toluene combustion. This property was also confirmed by a long-term reaction experiment. As shown in **Fig. 2b**, at the reaction temperature of 150°C, the Pt/Al₂O₃-H maintained a high and stable toluene conversion rate (about 90%). Only a small fluctuation was observed during the entire test period (100 hr). These results demonstrated the potential applications of the Pt/Al_2O_3 -H.

2.2. Characterizations of Pt/Al2O3-C and Pt/Al2O3-H

Changes in the surface structures of Pt/Al_2O_3 activated by different approaches were monitored and characterized. TEM images and size histograms of the Pt/Al_2O_3 -C and Pt/Al_2O_3 -H are presented in **[Fig.](#page-4-0) 3**. The Pt NPs of both samples were clearly well dispersed on the surface of the support. However, the size of Pt NPs in the Pt/Al_2O_3-C (4.22 nm) was larger than that in the Pt/Al_2O_3-H (2.69 nm). And the size and morphology of Pt NPs in the Pt/Al_2O_3-H did not substantially change relative to those in the Pt colloids (2.45 nm, **Fig. S4**), indicating that hydrothermal activation did not have a considerable effect on the structure of the preformed noble metal NPs. Therefore, the active sites of the preformed noble metal NPs were retained. This achievement is useful in designing and synthesizing supported noble metal catalysts with a specific structure of noble metal to express high activity. Moreover, the morphology of the support in the Pt/Al_2O_3 activated by different approaches were vastly different. Accordingly, the Pt/Al_2O_3 -C and Pt/Al_2O_3-H were characterized via SEM and XRD to investigate further the differences in the support of Pt/Al_2O_3 activated by different approaches.

SEM images of the Pt/Al₂O₃-C and Pt/Al₂O₃-H are given in **[Fig.](#page-4-0) 4a** and **b**, respectively. Compared with the SEM images of Al2O3 (**Fig. S4**), calcination activation did not affect the morphology of the support, whereas hydrothermal activation resulted in the formation of numerous ridges on the surface of the sample. These ridges may provide a larger place for reaction. The effects of different activation approaches on the

Fig. 3 – Transmission electron microscopy (TEM) images (1–3) and size histograms (4) of (a) Pt/Al₂O₃-C and (b) Pt/Al₂O₃-H.

Fig. 4 - Scanning electron microscopy (SEM) images of (a) Pt/Al2O3-C and (b) Pt/Al2O3-H; (c) X-ray diffraction (XRD) patterns of **Pt/Al2O3-C and Pt/Al2O3-H.**

crystal phase of the support were determined. XRD patterns of the Pt/Al₂O₃-C and Pt/Al₂O₃-H are shown in Fig. 4c. Given that Pt content was low and highly dispersed, no characteristic peaks of Pt species were detected in the XRD of both samples. Therefore, the XRD patterns completely reflected the crystal phase of the support. Compared with the XRD patterns of Al_2O_3 (Fig. S5), calcination activation did not change the Al_2O_3 crystal phase of the support, whereas hydrothermal activation transformed the support from Al_2O_3 crystal phase to AlO(OH) crystal phase. AlO(OH) is an oxide with a layered structure (**Fig. 4b**). The special morphology and the existence of numerous surface hydroxyl groups of AlO(OH) facilitate toluene adsorption [\(](#page-9-0)[Adebayo](#page-8-0) et al., 2020; [Ncube](#page-9-0) et al., 2017; Qu et al., 2020). These features are some of the reasons the activity of the Pt/Al₂O₃-H was better than that of the Pt/Al₂O₃-C.

 N_2 adsorption-desorption technique was adopted to evaluate the porous structure and texture of both samples. The adsorption-desorption isotherms and the corresponding pore-size distribution curves of the Pt/Al_2O_3 -C and Pt/Al_2O_3 -H are displayed in **Fig. S6**. It can be observed that both samples had similar mesoporous structures. However, the Pt/Al₂O₃-H had a larger specific surface area (S_{BET}), pore volume and pore size than the Pt/Al₂O₃-C ([Table](#page-5-0) 2). These characteristics are more conducive to the adsorption and diffusion of reactants and products, thereby promoting the catalytic reaction. The diffusion of reactants in the Pt/Al_2O_3-C and Pt/Al_2O_3-H was further examined by establishing the corresponding surface diffusion model by using the Materials Studio software (**Fig. S6**). The surface diffusion factor (**Table S2**) of toluene on AlO(OH) (2.57) was greater than that on Al_2O_3 (1.20), indicating that the structure of Pt/Al_2O_3-H was more conducive to toluene diffusion than that of the Pt/Al_2O_3 -C.

Above, the effects of different activation approaches on the activity of the catalysts were explored in terms of their phys-

Table 2 – Specific surface area (S $_{\rm BET}$), pore volume, pore size, surface diffusion factor, and surface element composition of

Fig. 5 – Raman spectra of Pt/Al_2O_3 -C and Pt/Al_2O_3 -H.

ical structures. Pt was the active component of the catalysts. Therefore, the effects of different activation approaches on Pt NPs must be further evaluated. The Raman spectra of both samples are exhibited in **Fig. 5**. A broad peak is observed at 557 cm−1, which was attributed to the stretching vibration of the Pt–O bond [\(Wang](#page-9-0) et al., 2019). The intensity of the vibration peak indicated that the Pt/Al_2O_3-H had more Pt–O bonds than Pt/Al₂O₃-C. This difference might be related to the interaction between Pt and the support. This supposition was further confirmed via XPS characterization.

The valence states of Pt NPs were characterized via XPS. Although the most intense photoemission lines of Pt were those that arose from Pt 4f levels, this energy region was overshadowed by the presence of a very strong Al 2p peak [\(Navarro](#page-9-0) et al., 2005). Consequently, the energy region of the less intense Pt 4d peak was recorded (**[Fig.](#page-6-0) 6a**). After curve fitting, the Pt 4d peak of Pt/Al₂O₃-C was resolved into five peaks (Chen et al., [2017a;](#page-8-0) [Jaramillo-Páez](#page-8-0) et al., 2018; Wang et al., 2013). The doublet peaks with binding energies of approximately 314.5 and 331.2 eV were assigned to the peaks of metallic Pt (Pt^0); the doublet peaks with a binding energy of approximately 318.4 and 335.1 eV was assigned to the peaks of the oxidation state of Pt (Pt⁴⁺); and the single peak appeared at 325.2 eV which could be assigned to the peak of some partial oxidized state of Pt (Pt^{δ +}). For Pt/Al₂O₃-H, the Pt 4d peak was resolved into four peaks. The doublet peaks with binding energies of approximately 311.9 and 328.6 eV were assigned to the peaks of Pt^{0} , and the doublet peaks with binding en-

ergies of approximately 315.8 and 332.5 eV were assigned to the peak of Pt^{4+} . Compared with those in the Pt/Al_2O_3 -C, the peak positions of Pt in Pt/Al_2O_3-H shifted to lower binding energies. This result was outcome probably because the support transformed from Al_2O_3 to AlO(OH), which in turn increased the negative electrons surrounding Pt. The contents of Pt at different valence states are listed in Table 2. The Pt/Al₂O₃-H had more abundant oxidized state of Pt $(Pt^{4+}+Pt^{\delta+})$ than the Pt/Al_2O_3 -C possibly because the interaction between Pt and the support was stronger in the former than that in the latter. Given that the Pt colloids were synthesized under reducing conditions, metallic Pt was obtained. When the surfactant on the surface of Pt NPs was removed, the Pt NPs interacted with the support to change the valence state owing to their high surface energy. However, the interaction between the Pt NPs and the inert support Al_2O_3 was weak, and electron transfer did not readily occur between them. Therefore, the Pt/Al₂O₃ activated via calcination approach had only a small amount of Pt in oxidation state (Pt⁴⁺ and Pt^{δ +}). By contrast, AlO(OH) with incomplete crystallization and a high interfacial free energy exerted a strong interaction with the Pt NPs, which promoted the formation of Pt–O bands. Consequently, the Pt/Al₂O₃ activated via the hydrothermal approach had large amounts of Pt in oxidation state which were all Pt^{4+} . Although the nature of active Pt species in the toluene combustion remains debatable, it has been recognized that either metallic Pt or synergistic metallic Pt and oxidized state of Pt are the active sites. A high Pt content in oxidation state helps to improve the catalytic activity of Pt-based catalysts [\(Cheng](#page-8-0) et al., 2020; Xi et al., 2020; Zhao et al., [2020a\)](#page-9-0). This claim was [consistent](#page-9-0) with the test results of toluene catalytic combustion over the Pt/Al₂O₃-C and Pt/Al_2O_3-H .

The O 1 s peaks of the Pt/Al₂O₃-C and Pt/Al₂O₃-H are shown in **[Fig.](#page-6-0) 6b**. After curve fitting, the O 1 s peaks of both samples were resolved into two peaks. The peak with a binding energy of approximately 530.5 eV was assigned to the peak of lattice oxygen (O_{latt}) , and the peak with a binding energy of approximately 531.6 eV was assigned to the peak of surface oxygen (O_{ads}) . O_{ads} mainly include oxygen species, such as O_2^2 , O $^-$ and surface hydroxyl groups, which have good mobility and activity (Fan et al., [2017;](#page-8-0) Wang et al., [2020a;](#page-9-0) Wei et al., 2011). The Pt/Al₂O₃-H had more O_{ads} on its surface than the Pt/Al2O3-C (**Table 2**) because AlO(OH) had abundant surface hydroxyl groups and strongly interacted with the Pt NPs. Pt NPs in Pt/Al₂O₃-H were easier to activate adsorbed O₂ than those in Pt/Al_2O_3 -C [\(Jeong](#page-8-0) et al., 2008; [Zhang](#page-9-0) et al., 2012), thus benefitting the catalytic combustion of toluene.

Fig. 6 - (a) Pt 4d and (b) O 1 s X-ray photoelectron spectroscopy (XPS) spectra of Pt/Al₂O₃-C and Pt/Al₂O₃-H.

2.3. Mechanism for improving performance of Pt/Al2O3 activated by hydrothermal approach

According to above results, the possible mechanism by which the hydrothermal approach activates the as-prepared Pt/Al_2O_3 catalyst with excellent performance of catalytic toluene combustion could be inferred. Catalytic toluene combustion is [determined](#page-8-0) by three main factors (Gan et al., al.,2019): toluene adsorption, $O₂$ activation, and desorption products (CO₂ and H₂O). In this work, Al_2O_3 is transformed into AlO(OH) by hydrothermal activation, thereby endowing the catalysts with abundant surface hydroxyl groups and substantially improving their toluene adsorption capacity. AlO(OH) has a larger specific surface area than Al_2O_3 owing to its special morphology and structure that facilitates toluene adsorption. The strong interaction between AlO(OH) and Pt NPs promoted electron transfer between them, making the activation of adsorbed O_2 by Pt easier. The synergistic effects of Pt NPs and AlO(OH) promoted the toluene oxidation process. Moreover, according to the results of stability test in **[Fig.](#page-3-0) 2**, the reaction products desorbed well on Pt/Al_2O_3 -H. Therefore, the Pt/Al₂O₃-H exhibited excellent toluene catalytic combustion activity and stability. In sum, the structure of hydrothermaltreated Pt/Al₂O₃ is suitable for toluene oxidation. The possible reaction process by which the Pt/Al_2O_3 -H catalyzes toluene combustion is illustrated in **Fig. 7**. Hydrothermal treatment induces the as-prepared Pt/Al_2O_3 to produce abundant surface hydroxyl groups, and the Pt NPs in this structure more easily activate the absorbed O_2 into active oxygen species. And, the abundant surface hydroxyl groups of the catalyst facilitate toluene adsorption. Afterward, the active oxygen species oxidize the adsorbed toluene to $CO₂$ and $H₂O$. Finally, $CO₂$ and $H₂O$ are desorbed from the catalyst surface, allowing the catalyst to resume its activity.

2.4. Improving performance of Pt/Al2O3-C by hydrothermal treatment

We predicted that the support of Pt/Al_2O_3 -C treated via the hydrothermal approach (denoted as Pt/Al_2O_3 -C-H) would transform from Al_2O_3 to AlO(OH) and interact with the Pt NPs to en-

Fig. 7 – A proposed reaction process of toluene oxidation over Pt/Al_2O_3-H .

hance the catalytic performance of toluene combustion. The proposed mechanism was verified by comparing the predicted results with the actual characterization and activity test results of Pt/Al_2O_3 -C-H.

The XRD pattern and SEM image of the Pt/Al_2O_3 -C-H are shown in **[Fig.](#page-7-0) 8a**. The crystalline phase structure and morphology of the Pt/Al_2O_3 -C-H were consistent with those of Pt/Al₂O₃-H. Compared with Pt/Al₂O₃-C ([Table](#page-5-0) 2), the Pt/Al₂O₃-C-H had a larger S_{BET} (176.7 m²/g), pore volume (2.76 cm³/g), and pore size (5.47 nm). These results demonstrated that the support of the Pt/Al_2O_3 -C treated via hydrothermal approach transformed from Al_2O_3 to AlO(OH), consistent with the pre-dicted results. The Raman spectrum ([Fig.](#page-7-0) 8b) of the Pt/Al₂O₃-C-H shows that the intensity of the Pt–O bond stretching vibration peak was considerably stronger than that of the Pt/Al_2O_3 -C, indicating that the interaction between the Pt NPs and the support was enhanced after the Pt/Al₂O₃-C treated via hydrothermal approach. This result was also confirmed by the XPS spectrum of the Pt/Al2O3-C-H (**[Fig.](#page-7-0) 8c** and **d**). Compared

Fig. 8 - (a) XRD patterns, (inset) SEM images, (b) Raman, (c) Pt 4d and (d) O 1 s XPS spectra of Pt/Al2O3-C-H (Pt/Al2O3-C treated **via the hydrothermal approach).**

with those of the Pt/Al₂O₃-C ([Table](#page-5-0) 2), the Pt in oxidation and O_{ads} contents of the Pt/Al₂O₃-C-H substantially increased to 42% and 77%, respectively. These results showed that the support of the Pt/Al₂O₃-C treated via hydrothermal approach strongly interacted with Pt NPs, consistent with the predicted results.

The catalytic toluene combustion performance of the Pt/Al₂O₃-C and Pt/Al₂O₃-C-H is presented in Fig. 9. As expected, Pt/Al_2O_3 -C-H had a better catalytic toluene combustion activity than the Pt/Al₂O₃-C. Compared with that of the Pt/Al₂O₃-C, the toluene catalytic combustion (T₅₀) of the Pt/Al_2O_3 -C-H decreased by 89 $°C$. This result proved that hydrothermal treatment of Pt/Al_2O_3 is a feasible strategy for enhancing the catalytic activity in toluene combustion. However, the activity of the Pt/Al₂O₃-C-H (0.0540 sec⁻¹ at 140°C, **Table S1**) was lower than that of Pt/Al₂O₃-H (0.0756 sec⁻¹ at 130°C, **Table S1**). This result was obtained probably because the asprepared $Pt/Al₂O₃$ activated via calcination approach reduced the surface energy of Pt NPs, thereby weakening the interaction between the Pt NPs and AlO(OH). Moreover, this result indicated that hydrothermal activation would not substantially affect the Pt NPs, and the structure associated with the high activity of the Pt NPs can be retained.

3. Conclusions

In summary, we obtained a highly efficient catalyst by activating Pt/Al_2O_3 via the hydrothermal approach. Its excellent ac-

Fig. 9 – Toluene conversion as a function of temperature over the **Pt/Al₂O₃-C and Pt/Al₂O₃-C-H**. Reaction conditions: **²⁵⁰⁰ ppmV toluene, WHSV=100,000 mL/(g**•**hr).**

tivity was due to the synergistic effects of Pt NPs and AlO(OH). Unlike calcination activation (which requires thermal treatment), hydrothermal activation did not considerably increase the size of Pt NPs, thereby retaining the structure associated with high catalytic activity of the Pt NPs. Moreover, the support of the Pt/Al₂O₃ activated via the hydrothermal approach was transformed from Al_2O_3 to AlO(OH) with a special morphology and abundant surface hydroxyl groups. The strong interaction between the Pt NPs and AlO(OH) increased the Pt content in oxidation state and more easily activated the adsorbed $O₂$. The presence of abundant surface hydroxyl groups facilitated toluene adsorption to promote the toluene oxidation process. This study provides insights into the design of highly efficient and inexpensive Pt-based catalysts.

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Nos. 21506194, 21676255) and the Zhejiang Provincial Natural Science Foundation of China (Nos. LZ21E080001, 2017C03007, 2017C33106).

Appendix A Supplementary data

Supplementary data associated with this article can be found in the online version at doi[:10.1016/j.jes.2021.06.031.](https://doi.org/10.1016/j.jes.2021.06.031)

references

- [Adebayo,](http://refhub.elsevier.com/S1001-0742(21)00260-6/sbref0001) [B.O., Krishnamurthy,](http://refhub.elsevier.com/S1001-0742(21)00260-6/sbref0001) A., [Rownaghi,](http://refhub.elsevier.com/S1001-0742(21)00260-6/sbref0001) A.A., [Rezaei,](http://refhub.elsevier.com/S1001-0742(21)00260-6/sbref0001) F., 2020. Toluene abatement by simultaneous adsorption and oxidation over mixed-metal oxides. Ind. Eng. Chem. Res. 59, 13762–13772.
- [Belskaya,](http://refhub.elsevier.com/S1001-0742(21)00260-6/sbref0002) O.B., [Leont'eva,](http://refhub.elsevier.com/S1001-0742(21)00260-6/sbref0002) N.N., [Zaikovskii,](http://refhub.elsevier.com/S1001-0742(21)00260-6/sbref0002) V.I., [Kazakov,](http://refhub.elsevier.com/S1001-0742(21)00260-6/sbref0002) M.O., [Likholobov,](http://refhub.elsevier.com/S1001-0742(21)00260-6/sbref0002) V.A., 2019. Synthesis of layered [magnesium-aluminum](http://refhub.elsevier.com/S1001-0742(21)00260-6/sbref0002) hydroxide on the γ -Al₂O₃ surface for modifying the properties of supported platinum catalysts. Catal. Today 334, 249–257.
- [Boudart,](http://refhub.elsevier.com/S1001-0742(21)00260-6/sbref0003) M., 1969. Catalysis by [supported](http://refhub.elsevier.com/S1001-0742(21)00260-6/sbref0003) metals. Adv. Catal. 20, 153–166.

Cai, [W.Q., Yu,](http://refhub.elsevier.com/S1001-0742(21)00260-6/sbref0004) J.G., Gu, [S.H., Jaroniec,](http://refhub.elsevier.com/S1001-0742(21)00260-6/sbref0004) M., 2010. Facile hydrothermal synthesis of hierarchical boehmite: [sulfate-mediated](http://refhub.elsevier.com/S1001-0742(21)00260-6/sbref0004) transformation from nanoflakes to hollow microspheres. Cryst. Growth Des. 10, 3977–3982.

[Chen,](http://refhub.elsevier.com/S1001-0742(21)00260-6/sbref0005) C.W., [Tano,](http://refhub.elsevier.com/S1001-0742(21)00260-6/sbref0005) D., [Akashi,](http://refhub.elsevier.com/S1001-0742(21)00260-6/sbref0005) M., 1999. Synthesis of platinum colloids sterically stabilized by [poly\(N-vinylformamide\)](http://refhub.elsevier.com/S1001-0742(21)00260-6/sbref0005) or poly(N-vinylalkylamide) and their stability towards salt. Colloid Polym. Sci. 277, 488–493.

[Chen,](http://refhub.elsevier.com/S1001-0742(21)00260-6/sbref0006) F., [Wang,](http://refhub.elsevier.com/S1001-0742(21)00260-6/sbref0006) F., [Li,](http://refhub.elsevier.com/S1001-0742(21)00260-6/sbref0006) Q., [Cao,](http://refhub.elsevier.com/S1001-0742(21)00260-6/sbref0006) C.Y., [Zhang,](http://refhub.elsevier.com/S1001-0742(21)00260-6/sbref0006) X., [Ma,](http://refhub.elsevier.com/S1001-0742(21)00260-6/sbref0006) H., [et al.,](http://refhub.elsevier.com/S1001-0742(21)00260-6/sbref0006) 2017a. Effect of support (Degussa P25 TiO₂, anatase TiO₂, γ -Al₂O₃, and AlOOH) of Pt-based catalysts on the [formaldehyde](http://refhub.elsevier.com/S1001-0742(21)00260-6/sbref0006) oxidation at room temperature. Catal. Commun. 99, 39–42.

[Chen,](http://refhub.elsevier.com/S1001-0742(21)00260-6/sbref0007) L.N., [Hou,](http://refhub.elsevier.com/S1001-0742(21)00260-6/sbref0007) K.P., [Liu,](http://refhub.elsevier.com/S1001-0742(21)00260-6/sbref0007) Y.S., Qi, [Z.Y., Zheng,](http://refhub.elsevier.com/S1001-0742(21)00260-6/sbref0007) Q., Lu, [Y.H., et al.,](http://refhub.elsevier.com/S1001-0742(21)00260-6/sbref0007) 2019a. Efficient hydrogen production from methanol using a single-site Pt_1/CeO_2 catalyst. J. Am. Chem. Soc. 141, [17995–17999.](http://refhub.elsevier.com/S1001-0742(21)00260-6/sbref0007)

[Chen,](http://refhub.elsevier.com/S1001-0742(21)00260-6/sbref0008) X., Li, [J.Y., Wang,](http://refhub.elsevier.com/S1001-0742(21)00260-6/sbref0008) Y., [Zhou,](http://refhub.elsevier.com/S1001-0742(21)00260-6/sbref0008) Y., [Zhu,](http://refhub.elsevier.com/S1001-0742(21)00260-6/sbref0008) Q.L., Lu, [H.F.,](http://refhub.elsevier.com/S1001-0742(21)00260-6/sbref0008) 2020. Preparation of [nickel-foam-supported](http://refhub.elsevier.com/S1001-0742(21)00260-6/sbref0008) Pd/NiO monolithic catalyst and construction of novel electric heating reactor for catalytic combustion of VOCs. Appl. Catal. A 607, 117839.

[Chen,](http://refhub.elsevier.com/S1001-0742(21)00260-6/sbref0009) X., Xu, [Q.Q., Zhou,](http://refhub.elsevier.com/S1001-0742(21)00260-6/sbref0009) Y., [Zhu,](http://refhub.elsevier.com/S1001-0742(21)00260-6/sbref0009) Q.L., [Huang,](http://refhub.elsevier.com/S1001-0742(21)00260-6/sbref0009) H.F., [Pan,](http://refhub.elsevier.com/S1001-0742(21)00260-6/sbref0009) Z.Y., [et al.,](http://refhub.elsevier.com/S1001-0742(21)00260-6/sbref0009) 2017b. Facile and flexible preparation of highly active CuCe monolithic catalysts for VOCs combustion. [ChemistrySelect](http://refhub.elsevier.com/S1001-0742(21)00260-6/sbref0009) 2, 9069–9073.

[Chen,](http://refhub.elsevier.com/S1001-0742(21)00260-6/sbref0010) X., [Zhao,](http://refhub.elsevier.com/S1001-0742(21)00260-6/sbref0010) Z.L., [Zhou,](http://refhub.elsevier.com/S1001-0742(21)00260-6/sbref0010) Y., [Zhu,](http://refhub.elsevier.com/S1001-0742(21)00260-6/sbref0010) Q.L., [Pan,](http://refhub.elsevier.com/S1001-0742(21)00260-6/sbref0010) Z.Y., Lu, [H.F.,](http://refhub.elsevier.com/S1001-0742(21)00260-6/sbref0010) 2018. A facile route for spraying preparation of $Pt/TiO₂$ monolithic catalysts toward VOCs [combustion.](http://refhub.elsevier.com/S1001-0742(21)00260-6/sbref0010) Appl. Catal. A 566, 190–199.

[Chen,](http://refhub.elsevier.com/S1001-0742(21)00260-6/sbref0011) Z.Y., [Mao,](http://refhub.elsevier.com/S1001-0742(21)00260-6/sbref0011) J.X., [Zhou,](http://refhub.elsevier.com/S1001-0742(21)00260-6/sbref0011) R.X., 2019b. Preparation of [size-controlled](http://refhub.elsevier.com/S1001-0742(21)00260-6/sbref0011) Pt supported on Al_2O_3 nanocatalysts for deep catalytic oxidation of benzene at lower [temperature.](http://refhub.elsevier.com/S1001-0742(21)00260-6/sbref0011) Appl. Surf. Sci. 465, 15–22.

- [Cheng,](http://refhub.elsevier.com/S1001-0742(21)00260-6/sbref0012) Z., [Feng,](http://refhub.elsevier.com/S1001-0742(21)00260-6/sbref0012) B.B., [Chen,](http://refhub.elsevier.com/S1001-0742(21)00260-6/sbref0012) Z., [Zheng,](http://refhub.elsevier.com/S1001-0742(21)00260-6/sbref0012) J., [Li,](http://refhub.elsevier.com/S1001-0742(21)00260-6/sbref0012) J., [Zuo,](http://refhub.elsevier.com/S1001-0742(21)00260-6/sbref0012) S.F., 2020. La₂O₃ modified silica-pillared clays supported PtO_x [nanocrystalline](http://refhub.elsevier.com/S1001-0742(21)00260-6/sbref0012) catalysts for catalytic combustion of benzene. Chem. Eng. J. 392, 123747.
- [Fan,](http://refhub.elsevier.com/S1001-0742(21)00260-6/sbref0013) L.J., [Xi,](http://refhub.elsevier.com/S1001-0742(21)00260-6/sbref0013) K., [Zhou,](http://refhub.elsevier.com/S1001-0742(21)00260-6/sbref0013) Y., [Zhu,](http://refhub.elsevier.com/S1001-0742(21)00260-6/sbref0013) Q.L., [Chen,](http://refhub.elsevier.com/S1001-0742(21)00260-6/sbref0013) Y.F., Lu, [H.F.,](http://refhub.elsevier.com/S1001-0742(21)00260-6/sbref0013) 2017. Design structure for CePr mixed oxide catalysts in soot combustion. RSC Adv. 7, [20309–20319.](http://refhub.elsevier.com/S1001-0742(21)00260-6/sbref0013)

[Gan,](http://refhub.elsevier.com/S1001-0742(21)00260-6/sbref0014) T., [Chu,](http://refhub.elsevier.com/S1001-0742(21)00260-6/sbref0014) X.F., [Qi,](http://refhub.elsevier.com/S1001-0742(21)00260-6/sbref0014) H., [Zhang,](http://refhub.elsevier.com/S1001-0742(21)00260-6/sbref0014) W.X., [Zou,](http://refhub.elsevier.com/S1001-0742(21)00260-6/sbref0014) Y.C., [Yan,](http://refhub.elsevier.com/S1001-0742(21)00260-6/sbref0014) W.F., [et al.,](http://refhub.elsevier.com/S1001-0742(21)00260-6/sbref0014) 2019. Pt/Al₂O₃ with ultralow Pt-loading catalyze toluene oxidation: promotional synergistic effect of Pt [nanoparticles](http://refhub.elsevier.com/S1001-0742(21)00260-6/sbref0014) and Al_2O_3 support. Appl. Catal. B 257, 117943.

- [García,](http://refhub.elsevier.com/S1001-0742(21)00260-6/sbref0015) T., [Solsona,](http://refhub.elsevier.com/S1001-0742(21)00260-6/sbref0015) B., [Taylor,](http://refhub.elsevier.com/S1001-0742(21)00260-6/sbref0015) S.H., 2006. [Naphthalene](http://refhub.elsevier.com/S1001-0742(21)00260-6/sbref0015) total oxidation over metal oxide catalysts. Appl. Catal. B 66, 92–99.
- [Genuino,](http://refhub.elsevier.com/S1001-0742(21)00260-6/sbref0016) [H.C., Dharmarathna,](http://refhub.elsevier.com/S1001-0742(21)00260-6/sbref0016) S., [Nijagi,](http://refhub.elsevier.com/S1001-0742(21)00260-6/sbref0016) E.C., Mei, [M.C., Suib,](http://refhub.elsevier.com/S1001-0742(21)00260-6/sbref0016) S.L., 2012. Gas-phase total oxidation of benzene, toluene, ethylbenzene, and xylenes using shape-selective manganese oxide and copper manganese oxide catalysts. J. Phys. Chem. C 116, 12066–12078.
- [Goodman,](http://refhub.elsevier.com/S1001-0742(21)00260-6/sbref0017) E.D., Ye, [A.A., Aitbekova,](http://refhub.elsevier.com/S1001-0742(21)00260-6/sbref0017) A., [Mueller,](http://refhub.elsevier.com/S1001-0742(21)00260-6/sbref0017) O., [Riscoe,](http://refhub.elsevier.com/S1001-0742(21)00260-6/sbref0017) A.R., [Taylor,](http://refhub.elsevier.com/S1001-0742(21)00260-6/sbref0017) T.N., [et al.,](http://refhub.elsevier.com/S1001-0742(21)00260-6/sbref0017) 2019. [Palladium oxidation leads to methane](http://refhub.elsevier.com/S1001-0742(21)00260-6/sbref0017) combustion activity: effects of particle size and alloying with platinum. J. Chem. Phys. 151, 154703.

[Gu,](http://refhub.elsevier.com/S1001-0742(21)00260-6/sbref0018) L., [Chen,](http://refhub.elsevier.com/S1001-0742(21)00260-6/sbref0018) X., [Zhou,](http://refhub.elsevier.com/S1001-0742(21)00260-6/sbref0018) Y., [Zhu,](http://refhub.elsevier.com/S1001-0742(21)00260-6/sbref0018) Q.L., [Huang,](http://refhub.elsevier.com/S1001-0742(21)00260-6/sbref0018) H.F., Lu, [H.F.,](http://refhub.elsevier.com/S1001-0742(21)00260-6/sbref0018) 2017. Propene and CO oxidation on Pt/Ce-Zr-SO $_4^2$ ⁻ diesel oxidation catalysts: effect of sulfate on activity and stability. Chin. J. Catal. 38, 607–615.

- [Hashmi,](http://refhub.elsevier.com/S1001-0742(21)00260-6/sbref0019) [A.S.K., Hutchings,](http://refhub.elsevier.com/S1001-0742(21)00260-6/sbref0019) G.J., 2006. Gold catalysis. Angew. Chem. Int. Ed. 45, 7896–7936.
- [He,](http://refhub.elsevier.com/S1001-0742(21)00260-6/sbref0020) L., [Fan,](http://refhub.elsevier.com/S1001-0742(21)00260-6/sbref0020) Y.L., [Luo,](http://refhub.elsevier.com/S1001-0742(21)00260-6/sbref0020) L.G., [Bellettre,](http://refhub.elsevier.com/S1001-0742(21)00260-6/sbref0020) J., [Yue,](http://refhub.elsevier.com/S1001-0742(21)00260-6/sbref0020) J., 2020. Preparation of Pt/γ -Al2O3 catalyst coating in [microreactors](http://refhub.elsevier.com/S1001-0742(21)00260-6/sbref0020) for catalytic methane combustion. Chem. Eng. J. 380, 122424.

[Hirai,](http://refhub.elsevier.com/S1001-0742(21)00260-6/sbref0021) H., [Nakao,](http://refhub.elsevier.com/S1001-0742(21)00260-6/sbref0021) [Y., Toshima,](http://refhub.elsevier.com/S1001-0742(21)00260-6/sbref0021) N., 1978. Preparation of colloidal rhodium in poly(vinyl alcohol) by reduction with methanol. J. Macromol. Sci. Chem. 12, 1117–1141.

[Huang,](http://refhub.elsevier.com/S1001-0742(21)00260-6/sbref0022) H.F., [Jiang,](http://refhub.elsevier.com/S1001-0742(21)00260-6/sbref0022) B., [Gu,](http://refhub.elsevier.com/S1001-0742(21)00260-6/sbref0022) L., Qi, [Z.H.,](http://refhub.elsevier.com/S1001-0742(21)00260-6/sbref0022) Lu, [H.F.,](http://refhub.elsevier.com/S1001-0742(21)00260-6/sbref0022) 2015. Promoting effect of vanadium on catalytic activity of [Pt/Ce–Zr–O](http://refhub.elsevier.com/S1001-0742(21)00260-6/sbref0022) diesel oxidation catalysts. J. Environ. Sci. 33, 135–142.

[Huang,](http://refhub.elsevier.com/S1001-0742(21)00260-6/sbref0023) S.S., [Yang,](http://refhub.elsevier.com/S1001-0742(21)00260-6/sbref0023) D.Y., [Tang,](http://refhub.elsevier.com/S1001-0742(21)00260-6/sbref0023) Q.X., [Deng,](http://refhub.elsevier.com/S1001-0742(21)00260-6/sbref0023) W., [Zhang,](http://refhub.elsevier.com/S1001-0742(21)00260-6/sbref0023) L., Jia, [Z.Y.,](http://refhub.elsevier.com/S1001-0742(21)00260-6/sbref0023) et [al.,](http://refhub.elsevier.com/S1001-0742(21)00260-6/sbref0023) 2020. Pt-loaded ellipsoidal nanozeolite as an active catalyst for toluene catalytic combustion. [Microporous](http://refhub.elsevier.com/S1001-0742(21)00260-6/sbref0023) Mesoporous Mater. 305, 110292.

[Jaramillo-Páez,](http://refhub.elsevier.com/S1001-0742(21)00260-6/sbref0024) C.A., [Navío,](http://refhub.elsevier.com/S1001-0742(21)00260-6/sbref0024) J.A., [Hidalgo,](http://refhub.elsevier.com/S1001-0742(21)00260-6/sbref0024) M.C., [Macías,](http://refhub.elsevier.com/S1001-0742(21)00260-6/sbref0024) M., 2018. ZnO and Pt-ZnO photocatalysts: [characterization](http://refhub.elsevier.com/S1001-0742(21)00260-6/sbref0024) and photocatalytic activity assessing by means of three substrates. Catal. Today 313, 12–19.

[Jeong,](http://refhub.elsevier.com/S1001-0742(21)00260-6/sbref0025) J.W., [Choi,](http://refhub.elsevier.com/S1001-0742(21)00260-6/sbref0025) B., [Lim,](http://refhub.elsevier.com/S1001-0742(21)00260-6/sbref0025) M.T., 2008. Catalytic oxidation for [carbon-black](http://refhub.elsevier.com/S1001-0742(21)00260-6/sbref0025) simulating diesel particulate matter over promoted Pt/Al_2O_3 catalysts. J. Ind. Eng. Chem. 14, 830–835.

Jia, [C.J., Schüth,](http://refhub.elsevier.com/S1001-0742(21)00260-6/sbref0026) F., 2011. Colloidal metal [nanoparticles](http://refhub.elsevier.com/S1001-0742(21)00260-6/sbref0026) as a component of designed catalyst. Phys. Chem. Chem. Phys. 13, 2457–2487.

[Kondratowicz,](http://refhub.elsevier.com/S1001-0742(21)00260-6/sbref0027) T., [Drozdek,](http://refhub.elsevier.com/S1001-0742(21)00260-6/sbref0027) M., [Michalik,](http://refhub.elsevier.com/S1001-0742(21)00260-6/sbref0027) M., [Gac,](http://refhub.elsevier.com/S1001-0742(21)00260-6/sbref0027) W., [Gajewska,](http://refhub.elsevier.com/S1001-0742(21)00260-6/sbref0027) M., Kuśtrowski, P., 2020. Catalytic activity of Pt species variously dispersed on hollow $ZrO₂$ spheres in combustion of volatile organic [compounds.](http://refhub.elsevier.com/S1001-0742(21)00260-6/sbref0027) Appl. Surf. Sci. 513, 145788.

[Kozerozhets,](http://refhub.elsevier.com/S1001-0742(21)00260-6/sbref0028) I.V., [Panasyuk,](http://refhub.elsevier.com/S1001-0742(21)00260-6/sbref0028) G.P., [Semenov,](http://refhub.elsevier.com/S1001-0742(21)00260-6/sbref0028) E.A., [Voroshilov,](http://refhub.elsevier.com/S1001-0742(21)00260-6/sbref0028) I.L., [Azarova,](http://refhub.elsevier.com/S1001-0742(21)00260-6/sbref0028) L.A., [Belan,](http://refhub.elsevier.com/S1001-0742(21)00260-6/sbref0028) V.N., 2020. Mechanism of the conversion of γ -Al₂O₃ nanopowder into boehmite under [hydrothermal](http://refhub.elsevier.com/S1001-0742(21)00260-6/sbref0028) conditions. Inorg. Mater. 56, 716–722.

Lai, [Y.T., Chen,](http://refhub.elsevier.com/S1001-0742(21)00260-6/sbref0029) T.C., [Lan,](http://refhub.elsevier.com/S1001-0742(21)00260-6/sbref0029) Y.K., [Chen,](http://refhub.elsevier.com/S1001-0742(21)00260-6/sbref0029) B.S., [You,](http://refhub.elsevier.com/S1001-0742(21)00260-6/sbref0029) J.H., [Yang,](http://refhub.elsevier.com/S1001-0742(21)00260-6/sbref0029) C.M., et [al.,](http://refhub.elsevier.com/S1001-0742(21)00260-6/sbref0029) 2014. Pt/SBA-15 as a highly efficient catalyst for catalytic toluene oxidation. ACS Catal. 4, [3824–3836.](http://refhub.elsevier.com/S1001-0742(21)00260-6/sbref0029)

Li, [H.T.,](http://refhub.elsevier.com/S1001-0742(21)00260-6/sbref0030) Xu, [Y.L., Gao,](http://refhub.elsevier.com/S1001-0742(21)00260-6/sbref0030) C.G., [Zhao,](http://refhub.elsevier.com/S1001-0742(21)00260-6/sbref0030) Y.X., 2010. Structural and textural evolution of Ni/ γ -Al₂O₃ catalyst under [hydrothermal](http://refhub.elsevier.com/S1001-0742(21)00260-6/sbref0030) conditions. Catal. Today 158, 475–480.

- Li, [L.C., Zhang,](http://refhub.elsevier.com/S1001-0742(21)00260-6/sbref0031) N.Q., [He,](http://refhub.elsevier.com/S1001-0742(21)00260-6/sbref0031) H., [Zhang,](http://refhub.elsevier.com/S1001-0742(21)00260-6/sbref0031) G.Z., [Song,](http://refhub.elsevier.com/S1001-0742(21)00260-6/sbref0031) L.Y., Qiu, [W.G.,](http://refhub.elsevier.com/S1001-0742(21)00260-6/sbref0031) 2019. [Shape-controlled](http://refhub.elsevier.com/S1001-0742(21)00260-6/sbref0031) synthesis of Pd nanocrystals with exposed {110} facets and their catalytic applications. Catal. Today 327, 28–36.
- [Lin,](http://refhub.elsevier.com/S1001-0742(21)00260-6/sbref0032) Y., [Sun,](http://refhub.elsevier.com/S1001-0742(21)00260-6/sbref0032) J., Li, [S.J., Wang,](http://refhub.elsevier.com/S1001-0742(21)00260-6/sbref0032) D., [Zhang,](http://refhub.elsevier.com/S1001-0742(21)00260-6/sbref0032) C.H., [Wang,](http://refhub.elsevier.com/S1001-0742(21)00260-6/sbref0032) Z., [et al.,](http://refhub.elsevier.com/S1001-0742(21)00260-6/sbref0032) 2020. An efficient Pt/Ce_yCoO_x composite metal oxide for catalytic oxidation of toluene. Catal. Lett. 150, 3206–3213.
- Lu, [A.L., Sun,](http://refhub.elsevier.com/S1001-0742(21)00260-6/sbref0033) H.L., [Zhang,](http://refhub.elsevier.com/S1001-0742(21)00260-6/sbref0033) N.W., [Che,](http://refhub.elsevier.com/S1001-0742(21)00260-6/sbref0033) L.M., [Shan,](http://refhub.elsevier.com/S1001-0742(21)00260-6/sbref0033) S.Y., [Luo,](http://refhub.elsevier.com/S1001-0742(21)00260-6/sbref0033) J., [et al.,](http://refhub.elsevier.com/S1001-0742(21)00260-6/sbref0033) 2019. Surface [partial-charge-tuned](http://refhub.elsevier.com/S1001-0742(21)00260-6/sbref0033) enhancement of catalytic activity of platinum nanocatalysts for toluene oxidation. ACS Catal. 9, 7431–7442.
- Lu, [H.F., Kong,](http://refhub.elsevier.com/S1001-0742(21)00260-6/sbref0034) X.X., [Huang,](http://refhub.elsevier.com/S1001-0742(21)00260-6/sbref0034) H.F., [Zhou,](http://refhub.elsevier.com/S1001-0742(21)00260-6/sbref0034) Y., [Chen,](http://refhub.elsevier.com/S1001-0742(21)00260-6/sbref0034) Y.F., 2015. Cu–Mn–Ce ternary [mixed-oxide](http://refhub.elsevier.com/S1001-0742(21)00260-6/sbref0034) catalysts for catalytic combustion of toluene. J. Environ. Sci. 32, 102–107.
- [Navarro,](http://refhub.elsevier.com/S1001-0742(21)00260-6/sbref0035) R.M., [Álvarez-Galván,](http://refhub.elsevier.com/S1001-0742(21)00260-6/sbref0035) M.C., [Sánchez-Sánchez,](http://refhub.elsevier.com/S1001-0742(21)00260-6/sbref0035) M.C., [Rosa,](http://refhub.elsevier.com/S1001-0742(21)00260-6/sbref0035) F., [Fierro,](http://refhub.elsevier.com/S1001-0742(21)00260-6/sbref0035) J.L.G., 2005. [Production](http://refhub.elsevier.com/S1001-0742(21)00260-6/sbref0035) of hydrogen by oxidative reforming of ethanol over Pt catalysts supported on Al2O3 modified with Ce and La. Appl. Catal. B 55, 229–241.
- [Ncube,](http://refhub.elsevier.com/S1001-0742(21)00260-6/sbref0036) T., [Reddy,](http://refhub.elsevier.com/S1001-0742(21)00260-6/sbref0036) K.S.K., [Shoaibi,](http://refhub.elsevier.com/S1001-0742(21)00260-6/sbref0036) [A.S.A., Srinivasakannan,](http://refhub.elsevier.com/S1001-0742(21)00260-6/sbref0036) C., 2017. Benzene, Toluene, m-Xylene adsorption on silica-based adsorbents. Energy Fuels 31, 1882–1888.
- Pei, [W.B.,](http://refhub.elsevier.com/S1001-0742(21)00260-6/sbref0037) Liu, [Y.X., Deng,](http://refhub.elsevier.com/S1001-0742(21)00260-6/sbref0037) J.G., [Zhang,](http://refhub.elsevier.com/S1001-0742(21)00260-6/sbref0037) K.F., [Hou,](http://refhub.elsevier.com/S1001-0742(21)00260-6/sbref0037) Z.Q., [Zhao,](http://refhub.elsevier.com/S1001-0742(21)00260-6/sbref0037) X.T., et [al.,](http://refhub.elsevier.com/S1001-0742(21)00260-6/sbref0037) 2019. Partially embedding Pt [nanoparticles](http://refhub.elsevier.com/S1001-0742(21)00260-6/sbref0037) in the skeleton of 3DOM $Mn₂O₃$: an effective strategy for enhancing catalytic stability in toluene combustion. Appl. Catal. B 256, 117814.
- [Pitkäaho,](http://refhub.elsevier.com/S1001-0742(21)00260-6/sbref0038) S., [Matejova,](http://refhub.elsevier.com/S1001-0742(21)00260-6/sbref0038) L., [Ojala,](http://refhub.elsevier.com/S1001-0742(21)00260-6/sbref0038) S., [Gaalova,](http://refhub.elsevier.com/S1001-0742(21)00260-6/sbref0038) J., [Keiski,](http://refhub.elsevier.com/S1001-0742(21)00260-6/sbref0038) T.L., 2012. Oxidation of [perchloroethylene—Activity](http://refhub.elsevier.com/S1001-0742(21)00260-6/sbref0038) and selectivity of Pt, Pd, Rh, and V_2O_5 catalysts supported on Al_2O_3 , Al_2O_3 -TiO₂ and Al2O3-CeO2. Appl. Catal. B 113-114, 150–159.
- [Prorok,](http://refhub.elsevier.com/S1001-0742(21)00260-6/sbref0039) R., [Madej,](http://refhub.elsevier.com/S1001-0742(21)00260-6/sbref0039) D., 2020. Influence of hydrothermal conditions on the phase composition of materials from the system MgO-Al₂O₃-SiO₂-H₂O. J. Aust. Ceram. Soc. 56, 829-837.
- [Qu,](http://refhub.elsevier.com/S1001-0742(21)00260-6/sbref0040) J.F., [Chen,](http://refhub.elsevier.com/S1001-0742(21)00260-6/sbref0040) D.Y., Li, [N.J.,](http://refhub.elsevier.com/S1001-0742(21)00260-6/sbref0040) Xu, [Q.F., Li,](http://refhub.elsevier.com/S1001-0742(21)00260-6/sbref0040) H., [He,](http://refhub.elsevier.com/S1001-0742(21)00260-6/sbref0040) J.H., [et al.,](http://refhub.elsevier.com/S1001-0742(21)00260-6/sbref0040) 2020. [Construction](http://refhub.elsevier.com/S1001-0742(21)00260-6/sbref0040) of Pd-modified NiCoOx hollow nanospheres with surface hydroxyls and oxygen vacancies for highly enhanced catalytic toluene oxidation activity. ACS Sustain. Chem. Eng. 8, 10581–10587.
- [Rui,](http://refhub.elsevier.com/S1001-0742(21)00260-6/sbref0041) Z.B., [Tang,](http://refhub.elsevier.com/S1001-0742(21)00260-6/sbref0041) M.N., Ji, [W.K., Ding,](http://refhub.elsevier.com/S1001-0742(21)00260-6/sbref0041) J.J., Ji, [H.B.,](http://refhub.elsevier.com/S1001-0742(21)00260-6/sbref0041) 2017. Insight into the enhanced [performance](http://refhub.elsevier.com/S1001-0742(21)00260-6/sbref0041) of TiO₂ nanotube supported Pt catalyst for toluene oxidation. Catal. Today 297, 159–166.
- [Sasaki,](http://refhub.elsevier.com/S1001-0742(21)00260-6/sbref0042) T., [Horino,](http://refhub.elsevier.com/S1001-0742(21)00260-6/sbref0042) Y., [Ohtake,](http://refhub.elsevier.com/S1001-0742(21)00260-6/sbref0042) T., [Ogawa,](http://refhub.elsevier.com/S1001-0742(21)00260-6/sbref0042) K., [Suzaki,](http://refhub.elsevier.com/S1001-0742(21)00260-6/sbref0042) Y., 2020. A highly efficient monolayer Pt [nanoparticle](http://refhub.elsevier.com/S1001-0742(21)00260-6/sbref0042) catalyst prepared on a glass fiber surface. Catalysts 10, 472.
- [Scirè,](http://refhub.elsevier.com/S1001-0742(21)00260-6/sbref0043) S., [Liotta,](http://refhub.elsevier.com/S1001-0742(21)00260-6/sbref0043) L.F., 2012. Supported gold catalysts for the total oxidation of volatile organic [compounds.](http://refhub.elsevier.com/S1001-0742(21)00260-6/sbref0043) Appl. Catal. B 125, 222–246.
- [Sun,](http://refhub.elsevier.com/S1001-0742(21)00260-6/sbref0044) M., [Hu,](http://refhub.elsevier.com/S1001-0742(21)00260-6/sbref0044) W., [Yuan,](http://refhub.elsevier.com/S1001-0742(21)00260-6/sbref0044) S.D., [Zhang,](http://refhub.elsevier.com/S1001-0742(21)00260-6/sbref0044) H.L., [Cheng,](http://refhub.elsevier.com/S1001-0742(21)00260-6/sbref0044) T.Q., [Wang,](http://refhub.elsevier.com/S1001-0742(21)00260-6/sbref0044) J.L., et [al.,](http://refhub.elsevier.com/S1001-0742(21)00260-6/sbref0044) 2020. Effect of the loading sequence of $CeO₂$ and Pd over Al_2O_3 on the catalytic performance of Pd-only [close-coupled](http://refhub.elsevier.com/S1001-0742(21)00260-6/sbref0044) catalysts. Mol. Catal. 482, 100332.
- [Tang,](http://refhub.elsevier.com/S1001-0742(21)00260-6/sbref0045) W.X., [Wu,](http://refhub.elsevier.com/S1001-0742(21)00260-6/sbref0045) X.F., Li, [S.D.,](http://refhub.elsevier.com/S1001-0742(21)00260-6/sbref0045) Li, [W.H., Chen,](http://refhub.elsevier.com/S1001-0742(21)00260-6/sbref0045) Y.F., 2014. Porous Mn–Co mixed oxide nanorod as a novel catalyst with enhanced catalytic activity for removal of VOCs. Catal. Commun. 56, 134–138.
- [Wang,](http://refhub.elsevier.com/S1001-0742(21)00260-6/sbref0046) F., Qi, [G.Q., Zhang,](http://refhub.elsevier.com/S1001-0742(21)00260-6/sbref0046) C.Q., [Ren,](http://refhub.elsevier.com/S1001-0742(21)00260-6/sbref0046) H.C., [Ma,](http://refhub.elsevier.com/S1001-0742(21)00260-6/sbref0046) H., [Guo,](http://refhub.elsevier.com/S1001-0742(21)00260-6/sbref0046) Y., 2020a. [Na-promoted](http://refhub.elsevier.com/S1001-0742(21)00260-6/sbref0046) Pt/Al₂O₃ activity stability for the complete oxidation of HCHO at room temperature. Catal. Commun. 139, 105713.
- [Wang,](http://refhub.elsevier.com/S1001-0742(21)00260-6/sbref0047) M.M., [Chen,](http://refhub.elsevier.com/S1001-0742(21)00260-6/sbref0047) D.Y., Li, [N.J.,](http://refhub.elsevier.com/S1001-0742(21)00260-6/sbref0047) Xu, [Q.F., Li,](http://refhub.elsevier.com/S1001-0742(21)00260-6/sbref0047) H., [He,](http://refhub.elsevier.com/S1001-0742(21)00260-6/sbref0047) J.H., [et al.,](http://refhub.elsevier.com/S1001-0742(21)00260-6/sbref0047) 2020b. Highly efficient catalysts of bimetallic Pt–Ru nanocrystals supported on ordered $ZrO₂$ nanotube for toluene oxidation. ACS Appl. Mater. Interfaces 12, [13781–13789.](http://refhub.elsevier.com/S1001-0742(21)00260-6/sbref0047)
- [Wang,](http://refhub.elsevier.com/S1001-0742(21)00260-6/sbref0048) X.D., Yu, [H.B., Hua,](http://refhub.elsevier.com/S1001-0742(21)00260-6/sbref0048) D.Y., [Zhou,](http://refhub.elsevier.com/S1001-0742(21)00260-6/sbref0048) S.H., 2013. Enhanced catalytic hydrogenation activity and selectivity of Pt-MxOy/Al2O3 (M=Ni, Fe, Co) [heteroaggregate](http://refhub.elsevier.com/S1001-0742(21)00260-6/sbref0048) catalysts by *in situ* transformation of PtM alloy nanoparticles. J. Phys. Chem. C 117, 7294–7302.
- [Wang,](http://refhub.elsevier.com/S1001-0742(21)00260-6/sbref0049) Y.H., Le, [J.B.,](http://refhub.elsevier.com/S1001-0742(21)00260-6/sbref0049) Li, [W.Q., Wei,](http://refhub.elsevier.com/S1001-0742(21)00260-6/sbref0049) J., [Radjenovic,](http://refhub.elsevier.com/S1001-0742(21)00260-6/sbref0049) P.M., [Zhang,](http://refhub.elsevier.com/S1001-0742(21)00260-6/sbref0049) H., et [al.,](http://refhub.elsevier.com/S1001-0742(21)00260-6/sbref0049) 2019. *In situ* spectroscopic insight into the origin of the enhanced performance of bimetallic [nanocatalysts](http://refhub.elsevier.com/S1001-0742(21)00260-6/sbref0049) towards the oxygen reduction reaction (ORR). Angew. Chem. Int. Ed. 58, 16062–16066.
- [Wang,](http://refhub.elsevier.com/S1001-0742(21)00260-6/sbref0050) Z.W., [Ma,](http://refhub.elsevier.com/S1001-0742(21)00260-6/sbref0050) P.J., [Zheng,](http://refhub.elsevier.com/S1001-0742(21)00260-6/sbref0050) K., [Wang,](http://refhub.elsevier.com/S1001-0742(21)00260-6/sbref0050) C., Liu, [Y.X.,](http://refhub.elsevier.com/S1001-0742(21)00260-6/sbref0050) Dai, [H.X., et al.,](http://refhub.elsevier.com/S1001-0742(21)00260-6/sbref0050) 2020c. Size effect, mutual inhibition and oxidation mechanism of the catalytic removal of a toluene and acetone mixture over TiO₂ [nanosheet-supported](http://refhub.elsevier.com/S1001-0742(21)00260-6/sbref0050) Pt nanocatalysts. Appl. Catal. B 274, 118963.
- [Waqas,](http://refhub.elsevier.com/S1001-0742(21)00260-6/sbref0051) M., [Kasmi,](http://refhub.elsevier.com/S1001-0742(21)00260-6/sbref0051) [A.E., Kouotou,](http://refhub.elsevier.com/S1001-0742(21)00260-6/sbref0051) P.M., [Wang,](http://refhub.elsevier.com/S1001-0742(21)00260-6/sbref0051) Y., [Tian,](http://refhub.elsevier.com/S1001-0742(21)00260-6/sbref0051) Z.Y., 2020. Support effect on the catalytic activity and stability of non-crystal ternary oxides. Colloids Surf. A 586, 124218.
- [Wei,](http://refhub.elsevier.com/S1001-0742(21)00260-6/sbref0052) Y.C., [Liu,](http://refhub.elsevier.com/S1001-0742(21)00260-6/sbref0052) J., [Zhao,](http://refhub.elsevier.com/S1001-0742(21)00260-6/sbref0052) Z., [Chen,](http://refhub.elsevier.com/S1001-0742(21)00260-6/sbref0052) Y.S., Xu, [C.M., Duan,](http://refhub.elsevier.com/S1001-0742(21)00260-6/sbref0052) A.J., [et al.,](http://refhub.elsevier.com/S1001-0742(21)00260-6/sbref0052) 2011. Highly active catalysts of gold nanoparticles supported on [three-dimensionally](http://refhub.elsevier.com/S1001-0742(21)00260-6/sbref0052) ordered macroporous LaFeO3 for soot oxidation. Angew. Chem., Int. Ed. 50, 2326–2329.
- [Wen,](http://refhub.elsevier.com/S1001-0742(21)00260-6/sbref0053) L., Fu, [J.K., Gu,](http://refhub.elsevier.com/S1001-0742(21)00260-6/sbref0053) P.Y., [Yao,](http://refhub.elsevier.com/S1001-0742(21)00260-6/sbref0053) B.X., Lin, [Z.H., Zhou,](http://refhub.elsevier.com/S1001-0742(21)00260-6/sbref0053) J.Z., 2008. Monodispersed gold nanoparticles supported on γ -Al₂O₃ for enhancement of [low-temperature](http://refhub.elsevier.com/S1001-0742(21)00260-6/sbref0053) catalytic oxidation of CO. Appl. Catal. B 79, 402–409.
- [Xi,](http://refhub.elsevier.com/S1001-0742(21)00260-6/sbref0054) K., [Wang,](http://refhub.elsevier.com/S1001-0742(21)00260-6/sbref0054) Y., [Jiang,](http://refhub.elsevier.com/S1001-0742(21)00260-6/sbref0054) K., [Xie,](http://refhub.elsevier.com/S1001-0742(21)00260-6/sbref0054) J., [Zhou,](http://refhub.elsevier.com/S1001-0742(21)00260-6/sbref0054) Y., Lu, [H.F.,](http://refhub.elsevier.com/S1001-0742(21)00260-6/sbref0054) 2020. Support [interaction](http://refhub.elsevier.com/S1001-0742(21)00260-6/sbref0054) of Pt/CeO₂ and Pt/SiC catalysts prepared by nano platinum colloid deposition for CO oxidation. J. Rare Earths 38, 376–383.
- [Xie,](http://refhub.elsevier.com/S1001-0742(21)00260-6/sbref0055) Y.J., [Guo,](http://refhub.elsevier.com/S1001-0742(21)00260-6/sbref0055) Y., [Guo,](http://refhub.elsevier.com/S1001-0742(21)00260-6/sbref0055) Y.L., [Wang,](http://refhub.elsevier.com/S1001-0742(21)00260-6/sbref0055) L., [Zhan,](http://refhub.elsevier.com/S1001-0742(21)00260-6/sbref0055) W.C., [Wang,](http://refhub.elsevier.com/S1001-0742(21)00260-6/sbref0055) Y.S., [et al.,](http://refhub.elsevier.com/S1001-0742(21)00260-6/sbref0055) 2016. A [highly-efficient](http://refhub.elsevier.com/S1001-0742(21)00260-6/sbref0055) La–MnOx catalyst for propane combustion: the promotional role of La and the effect of the preparation method. Catal. Sci. Technol. 6, 8222–8233.
- Xu, [Z.H., Yu,](http://refhub.elsevier.com/S1001-0742(21)00260-6/sbref0056) J.G., [Jaroniec,](http://refhub.elsevier.com/S1001-0742(21)00260-6/sbref0056) M., 2015. Efficient catalytic removal of [formaldehyde](http://refhub.elsevier.com/S1001-0742(21)00260-6/sbref0056) at room temperature using AlOOH nanoflakes with deposited Pt. Appl. Catal. B 163, 306–312.
- [Yang,](http://refhub.elsevier.com/S1001-0742(21)00260-6/sbref0057) D.Y., Fu, [S.Y., Huang,](http://refhub.elsevier.com/S1001-0742(21)00260-6/sbref0057) S.S., [Deng,](http://refhub.elsevier.com/S1001-0742(21)00260-6/sbref0057) W., [Wang,](http://refhub.elsevier.com/S1001-0742(21)00260-6/sbref0057) Y., [Guo,](http://refhub.elsevier.com/S1001-0742(21)00260-6/sbref0057) L.M., et [al.,](http://refhub.elsevier.com/S1001-0742(21)00260-6/sbref0057) 2020. The preparation of hierarchical Pt/ZSM-5 catalysts and their [performance](http://refhub.elsevier.com/S1001-0742(21)00260-6/sbref0057) for toluene catalytic combustion. Microporous Mesoporous Mater. 296, 109802.
- [Yang,](http://refhub.elsevier.com/S1001-0742(21)00260-6/sbref0058) H.G., [Deng,](http://refhub.elsevier.com/S1001-0742(21)00260-6/sbref0058) J.G., Liu, [Y.X.,](http://refhub.elsevier.com/S1001-0742(21)00260-6/sbref0058) Xie, [S.H., Xu,](http://refhub.elsevier.com/S1001-0742(21)00260-6/sbref0058) P., Dai, [H.X.,](http://refhub.elsevier.com/S1001-0742(21)00260-6/sbref0058) 2016. Pt/Co₃O₄/3DOM Al₂O₃: highly effective catalysts for toluene combustion. Chin. J. Catal. 37, 934–946.
- [Yin,](http://refhub.elsevier.com/S1001-0742(21)00260-6/sbref0059) H.F., [Ma,](http://refhub.elsevier.com/S1001-0742(21)00260-6/sbref0059) Z., [Chi,](http://refhub.elsevier.com/S1001-0742(21)00260-6/sbref0059) M.F., [Dai,](http://refhub.elsevier.com/S1001-0742(21)00260-6/sbref0059) S., 2010. Activation of [dodecanethiol-capped](http://refhub.elsevier.com/S1001-0742(21)00260-6/sbref0059) gold catalysts for CO oxidation by treatment with $KMnO_4$ or K_2MnO_4 . Catal. Lett. 136, 209-221.
- [Zhang,](http://refhub.elsevier.com/S1001-0742(21)00260-6/sbref0060) C.B., [Liu,](http://refhub.elsevier.com/S1001-0742(21)00260-6/sbref0060) F.D., [Zhai,](http://refhub.elsevier.com/S1001-0742(21)00260-6/sbref0060) Y.P., [Ariga,](http://refhub.elsevier.com/S1001-0742(21)00260-6/sbref0060) H., [Yi,](http://refhub.elsevier.com/S1001-0742(21)00260-6/sbref0060) N., [Liu,](http://refhub.elsevier.com/S1001-0742(21)00260-6/sbref0060) Y.C., [et al.,](http://refhub.elsevier.com/S1001-0742(21)00260-6/sbref0060) 2012. [Alkali-metal-promoted](http://refhub.elsevier.com/S1001-0742(21)00260-6/sbref0060) Pt/TiO₂ opens a more efficient pathway to formaldehyde oxidation at ambient temperatures. Angew. Chem. Int. Ed. 51, 9628–9632.
- [Zhang,](http://refhub.elsevier.com/S1001-0742(21)00260-6/sbref0061) H.Y., Sui, [S.H., Zheng,](http://refhub.elsevier.com/S1001-0742(21)00260-6/sbref0061) X.M., [Cao,](http://refhub.elsevier.com/S1001-0742(21)00260-6/sbref0061) R.R., [Zhang,](http://refhub.elsevier.com/S1001-0742(21)00260-6/sbref0061) P.Y., 2019. One-pot synthesis of atomically dispersed Pt on $MnO₂$ for efficient catalytic [decomposition](http://refhub.elsevier.com/S1001-0742(21)00260-6/sbref0061) of toluene at low temperatures. Appl. Catal. B 257, 117878.
- [Zhang,](http://refhub.elsevier.com/S1001-0742(21)00260-6/sbref0062) J.Y., [Rao,](http://refhub.elsevier.com/S1001-0742(21)00260-6/sbref0062) C., [Peng,](http://refhub.elsevier.com/S1001-0742(21)00260-6/sbref0062) H.G., [Peng,](http://refhub.elsevier.com/S1001-0742(21)00260-6/sbref0062) C., [Zhang,](http://refhub.elsevier.com/S1001-0742(21)00260-6/sbref0062) L., Xu, [X.L., et al.,](http://refhub.elsevier.com/S1001-0742(21)00260-6/sbref0062) 2018. Enhanced toluene combustion [performance](http://refhub.elsevier.com/S1001-0742(21)00260-6/sbref0062) over Pt loaded hierarchical porous MOR zeolite. Chem. Eng. J. 334, 10–18.
- [Zhang,](http://refhub.elsevier.com/S1001-0742(21)00260-6/sbref0063) S.S., Pu, [W.H., Chen,](http://refhub.elsevier.com/S1001-0742(21)00260-6/sbref0063) A., Xu, [Y.K., Wang,](http://refhub.elsevier.com/S1001-0742(21)00260-6/sbref0063) Y.Y., [Yang,](http://refhub.elsevier.com/S1001-0742(21)00260-6/sbref0063) C.Z., et [al.,](http://refhub.elsevier.com/S1001-0742(21)00260-6/sbref0063) 2020. Oxygen vacancies enhanced [photocatalytic](http://refhub.elsevier.com/S1001-0742(21)00260-6/sbref0063) activity towards VOCs oxidation over Pt deposited $Bi₂WO₆$ under visible light. J. Hazard. Mater. 384, 121478.
- [Zhao,](http://refhub.elsevier.com/S1001-0742(21)00260-6/sbref0064) P.P., [Chen,](http://refhub.elsevier.com/S1001-0742(21)00260-6/sbref0064) J., Yu, [H.B., Cen,](http://refhub.elsevier.com/S1001-0742(21)00260-6/sbref0064) B.H., [Wang,](http://refhub.elsevier.com/S1001-0742(21)00260-6/sbref0064) W.Y., [Luo,](http://refhub.elsevier.com/S1001-0742(21)00260-6/sbref0064) M.F., [et al.,](http://refhub.elsevier.com/S1001-0742(21)00260-6/sbref0064) 2020a. Insights into propane combustion over $MoO₃$ promoted $Pt/ZrO₂$ catalysts: the generation of Pt-MoO₃ interface and its [promotional](http://refhub.elsevier.com/S1001-0742(21)00260-6/sbref0064) role on catalytic activity. J. Catal. 391, 80–90.
- [Zhao,](http://refhub.elsevier.com/S1001-0742(21)00260-6/sbref0065) S.Z., [Wen,](http://refhub.elsevier.com/S1001-0742(21)00260-6/sbref0065) Y.F., [Liu,](http://refhub.elsevier.com/S1001-0742(21)00260-6/sbref0065) X.J., [Pen,](http://refhub.elsevier.com/S1001-0742(21)00260-6/sbref0065) X.Y., [Lü,](http://refhub.elsevier.com/S1001-0742(21)00260-6/sbref0065) F., [Gao,](http://refhub.elsevier.com/S1001-0742(21)00260-6/sbref0065) F.Y., [et al.,](http://refhub.elsevier.com/S1001-0742(21)00260-6/sbref0065) 2020b. Formation of active oxygen species on [single-atom](http://refhub.elsevier.com/S1001-0742(21)00260-6/sbref0065) Pt catalyst and promoted catalytic oxidation of toluene. Nano Res. 13, 1544–1551.
- [Zhou,](http://refhub.elsevier.com/S1001-0742(21)00260-6/sbref0066) S.H., [Ma,](http://refhub.elsevier.com/S1001-0742(21)00260-6/sbref0066) Z., [Yin,](http://refhub.elsevier.com/S1001-0742(21)00260-6/sbref0066) H.F., [Wu,](http://refhub.elsevier.com/S1001-0742(21)00260-6/sbref0066) Z.L., [Eichhorn,](http://refhub.elsevier.com/S1001-0742(21)00260-6/sbref0066) B., [Overbury,](http://refhub.elsevier.com/S1001-0742(21)00260-6/sbref0066) S.H., et [al.,](http://refhub.elsevier.com/S1001-0742(21)00260-6/sbref0066) 2009. [Low-temperature](http://refhub.elsevier.com/S1001-0742(21)00260-6/sbref0066) solution-phase synthesis of

NiAu alloy nanoparticles via butyllithium reduction: influences of synthesis details and application as the precursor to active Au-NiO/SiO₂ catalysts through proper [pretreatment.](http://refhub.elsevier.com/S1001-0742(21)00260-6/sbref0066) J. Phys. Chem. C 113, 5758–5765.

- Zhu, [A.M., Zhou,](http://refhub.elsevier.com/S1001-0742(21)00260-6/sbref0067) Y., [Wang,](http://refhub.elsevier.com/S1001-0742(21)00260-6/sbref0067) Y., [Zhu,](http://refhub.elsevier.com/S1001-0742(21)00260-6/sbref0067) Q.L., Liu, [H.Y., Zhang,](http://refhub.elsevier.com/S1001-0742(21)00260-6/sbref0067) Z.K., et [al.,](http://refhub.elsevier.com/S1001-0742(21)00260-6/sbref0067) 2018. Catalytic [combustion](http://refhub.elsevier.com/S1001-0742(21)00260-6/sbref0067) of VOCs on Pt/CuMnCe and Pt/CeY honeycomb monolithic catalysts. J. Rare Earths 36, 1272– 1277.
- [Zou,](http://refhub.elsevier.com/S1001-0742(21)00260-6/sbref0068) S.B., [Zhang,](http://refhub.elsevier.com/S1001-0742(21)00260-6/sbref0068) M.Y., [Mo,](http://refhub.elsevier.com/S1001-0742(21)00260-6/sbref0068) S.P., [Cheng,](http://refhub.elsevier.com/S1001-0742(21)00260-6/sbref0068) H.R., Fu, [M.L., Chen,](http://refhub.elsevier.com/S1001-0742(21)00260-6/sbref0068) P.R., et [al.,](http://refhub.elsevier.com/S1001-0742(21)00260-6/sbref0068) 2020a. Catalytic performance of toluene combustion over Pt nanoparticles supported on pore-modified [macro-meso-microporous](http://refhub.elsevier.com/S1001-0742(21)00260-6/sbref0068) zeolite foam. Nanomaterials 10, 30.
- [Zou,](http://refhub.elsevier.com/S1001-0742(21)00260-6/sbref0069) X.L., [Chen,](http://refhub.elsevier.com/S1001-0742(21)00260-6/sbref0069) J.F., [Rui,](http://refhub.elsevier.com/S1001-0742(21)00260-6/sbref0069) Z.B., Ji, [H.B.,](http://refhub.elsevier.com/S1001-0742(21)00260-6/sbref0069) 2020b. Sequential growth reveals [multi-spinel](http://refhub.elsevier.com/S1001-0742(21)00260-6/sbref0069) interface promotion for methane combustion over alumina supported palladium catalyst. Appl. Catal. B 273, 119071.