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1 | INTRODUCTION

Abstract

Development of alternative ionic liquid-based porous materials functionalized with
active sites for highly efficient selective and reversible SO, capture is highly desired.
Here, conjugated carbanion ILs based commercializable [N1111][TTFA]@polymer and
[N1111][BTFA]@polymer exhibited macroreticular internal structures and macropores
(>50 nm) as well as enhanced hydrophobicity. Efficient SO, capture (>7 mmol g~ 2),
high SO,/CO, and SO,/H,0O selectivity could be obtained. Adsorption isotherms
were correlated using Langmuir, Freundlich, and Sips models. The results of adsorp-
tion experiments, FT-IR spectroscopy, and quantum chemical calculations suggested
that the SO,- - -IL@polymer charge-transfer quasi-chemical interaction is the key role
for highly efficient selective SO, capture. Initial isosteric heat (10-20 kJ mol™2)
increased with SO, loading. To our best knowledge, this is the first example of using
conjugated carbanion-derived IL-based commercializable polymers for highly efficient
selective SO, capture. The carbanion engineering strategy opens a door to obtain
enhanced hydrophobicity as well as efficient selective SO, capture by IL-based com-

mercializable polymers.

KEYWORDS
carbanion, commercializable polymer, ionic liquid, separation, SO, adsorption

in low-quality byproducts and waste water.? Therefore, new efficient
and economical SO, sorbent materials must be developed for selec-

Sulfur compounds are existing in the fossil fuels, and transform to sul-
fur dioxide (SO,) in flue gas via burning. It is known that flue gas usu-
ally contains CO,, SO,, water vapor, etc., and SO, in atmosphere
threatens the environment and human health. Conventional limestone

scrubbing, ammonia scrubbing, and organic solvents absorption result

tive capture, aligning with resource sustainability and environmental
protection.?

lonic liquids (ILs), composed of organic/inorganic anions and
organic cations, are organic liquids at room temperature or below

100°C at least. In recent decades, ILs have been applied for efficient
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capture and separation of gases such as CO,,%"1° SO,
NO,,27722 NH3,2%727 CO,287%0 etc., because of their tunable structures

and unique properties, including non-flammability, low vapor pres-

11-14 st 15-18
’

sure, and high thermal-chemical stability.3*=3% For SO, capture,
Han et al.** reported that SO, capture by functionalized guanidi-
nium IL and a capacity of 0.978 mol/mol SO, could be achieved at
40°C under 8% SO, in N,. Another typical example reported by
Wang et al.® is that about IL:SO, = 1:2 chemisorption capacity
could be reached through multiple site interaction by azolate-
functionalized ILs under 0.1 bar SO,. There has been a rapid devel-
opment of the design and synthesis of ILs for SO, capture during
this decade.'?3¢ It is reported that most ILs with kinds of func-
tional groups could reach about 1 and 0.1 g g~! SO, capacities at
room temperature and 1 or 0.1 bar SO,, respectively. However,
high capacity indicates strong interaction energy or high sorption
enthalpy. Besides, the viscosity increased during SO, chemisorp-
tion, which limits the gas diffusion rate.®” Thus, the development
of alternative sorbents is necessary for SO, capture. Recently,
ionic porous organic materials (iPOMs) have been applied for SO,
capture with increased capacity due to the active sites and pore
structures. These iPOMs include poly(ionic liquid)s (PILs),%® ionic
metal-organic frameworks (MOFs),3? ionic metal-organic cages
(MOCs),*° ionic covalent organic frameworks (COFs),** ionic cova-
lent triazine frameworks (CTFs),*? and ionic hyper-crosslinked
polymers (HCPs),*>** etc. Although MOFs, MOCs, COFs, CTFs,
and HCPs seem to be the most promising because of their tunable
topology and pore size, the expensive ligands as well as tedious
preparation processes with low yields make them difficult to apply
in industry. Commercial Amberlite®IRA-900 is a kind of cation-
crosslinked macro-porous PlLs.*> Additionally, it is known that this
kind of polymer is more hydrophilic.*® Thus, the anion could be
functionalized, and polymers could be applied for highly efficient
selective and reversible capture of SO,.

Herein, we prepared a series of conjugated carbanion functio-
nalized IL-based commercializable polymers, including [Nq114]
[TTFA]@polymer with thenoyltrifluoroacetonate anion and [N1141]
[BTFA]@polymer with benzoyltrifluoroacetonate anion for SO,

O 0 : R
/’T‘ “L2” i Acid-base

¢ neutralization

FIGURE 1 Synthesis and structures of functional IL@polymers.

capture and SO,/CO, separation. [N1111][Brl@polymer with bro-
mide anion was also prepared for comparison (Figure 1). These
polymers exhibited the macroreticular internal structures and the
macropores (>50 nm). The effect of SO, partial pressure and tem-
perature on SO, adsorption capacity resulted in the efficient SO,
capture (>7 mmolg™!) and the high SO,/CO, selectivity
(62.6-fold) and SO,/H,0O selectivity (0.36-fold) in the ratio of
mmol g~ by the conjugated carbanion. The adsorption isotherms
were correlated using Langmuir, Freundlich, and Sips models. FT-
IR spectroscopy and quantum chemical calculations were used to
investigate the SO,---IL@polymer interactions. The carbanion

0 2 (8) 9 an

FIGURE 2 Schematic diagram of gas absorption experimental
device diagram. (1) SO, gas cylinder; (2) N, gas cylinder; (3,4) flow
meter; (5-7) three-way valve; (8) flask with water in it; (9) water bath;
(10) U-shaped tube; (11) exhaust gas treatment (NaOH aqueous
solution).
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engineering strategy designing conjugated carbanion functional
adsorbents opens a door to obtain enhanced hydrophobicity as
well as efficient selective SO, capture by IL-based commercializ-
able iPOMs.

2 | EXPERIMENTAL METHODS

21 | Materials

Amberlite® IRA-900(OH) ([N1111][OH]@polymer, CAS No. 9017-79-2)
was approached from Sinopharm Chemical Reagent Co., Ltd. The-
noyltrifluoroacetone (TTFA, 98%, CAS No. 206-316-7) and
3-benzoyl 1,1,1-trifluoroacetate (BTFA, 97%, CAS No. 326-06-7)
were bought from Shanghai Bide Pharmaceutical Technology Co.,
Ltd. Hydrobromic acid (HBr, 40%, CAS No. 10035-10-6) was
approached from Sinopharm Chemical Reagent Co., Ltd. SO,

(B)}

(99.99%), CO, (99.995%) and N, (99.99%) were supplied from
Hangzhou Jingong Gas Co., Ltd.

2.2 | Synthesis of IL@polymers

These IL@polymers could be easily prepared from [N1414][OH]
@polymer and different proton donors (TTFA, BTFA, and HBr) by
acid-base neutralization. Take the preparation of [N1114][TTFA]
@polymer as an example. Briefly, [N1111][OH]@polymer was first
activated by an ethanol solution of NaOH and then transferred to
the ion exchange column and washed with ethanol to remove
excess NaOH. Afterwards, excess ethanol solution of TTFA was
added to the ion exchange column for the acid-base neutralization
reaction with [N;111][OH]@polymer. When the reaction was fin-
ished, the polymer was washed with ethanol to remove excess
TTFA, and [N1111][TTFA]@polymer could be obtained readily after

FIGURE 3 SEM images and EDS mapping images of [N1111][TTFA]J@polymer (A), [N1111][BTFA]@polymer (B), and [N4114][Brl@polymer (C).
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evaporation and drying under vacuum at 60°C for 24 h to remove

ethanol and water.

2.3 | Synthesis of conjugated carbanion
functionalized ILs

For the synthesis of [N4114][TTFA], equimolar TTFA and anhydrous
LiOH were stirred in 50 mL ethanol solution at 40°C for 6 h, then
evaporated at 80°C and dried in vacuum at 80°C to obtain [Li][TTFA].
Subsequently, the equimolar [Li][TTFA] and [N1114][Br] were mixed in
CH,Cl»/H,0 solvent (4:1 in v/v) and stirred at room temperature for
4 h. The organic phase was extracted twice with deionized water, and
evaporated at 50°C to remove CH,Cl,, and then dried in vacuum at
60°C for 4 h to obtain [N4114][TTFA]. [N1114][BTFA] was obtained by
the same method.

2.4 | Characterization

The morphology of samples was examined by the field emission scan-
ning electron microscopy (SEM, Sigma 360). Surface functional moieties
were tested using X-ray photoelectron spectroscopy (XPS, Thermo Sci-
entific K-Alpha). The elemental analysis was conducted using an

Cis
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S fp
S| INqql[TTFAJ@polymer
S
= F1s 01s N 1s
2
2 L
£ [N,;,IBTFA]@polymer A
O1s N 1s Brfd
[N1414](Bri@polymer w
T T T T T T T
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Binding Energy (eV)
FIGURE 4 Full survey XPS spectra of [N1111][TTFA]J@polymer,

[N1111][BTFA]@polymer, and [N1;11][Brl@polymer.

TABLE 1

elemental analyzer (Elementar UNICUBE). N, adsorption-desorption
isotherms and specific surface areas were recorded at 77 K using the
Micromeritics 3Flex, with the Barret-Joyner-Halenda (BJH) model.
Thermogravimetric analysis (TGA) was performed on a Netzsch
TG209F3 Tarsus instrument from room temperature to 800°C in an N»
atmosphere at a rate of 10°C min~%. The water contact angles were
measured on an automatic video contact angle tester (Chengde Ding-

sheng JY-82C, China), using the sessile drop method. Fourier transform
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FIGURE 5 N, adsorption-desorption isotherms (A) and pore sizes
(B) of [N1114][TTFA]@polymer, [N1114][BTFA]J@polymer, and [N1114]
[Brl@polymer.

BET surface area (Sger, in m? g~ 1), total pore volume (Vior, in cm® g~ 1), average pore size (D,,, in nm), element analysis of N content

(N, in wt%), IL-moieties content (C,., in mmol g~1) based on N wt%, onset decomposition temperature (Tonset, in°C), contact angle (6, in°), SO,
adsorption at 20°C and 1 bar (Zso,, in mmol g~ 1), isosteric heat of SO, adsorption (Qs, in kJ mol~1), and CO, adsorption at 20°C and 1 bar (Zso,,

in mmol g~1) of IL@polymers in this work.

Polymer Sger Viot Day N

[N1114][TTFA]@polymer 19.36 0.21 63 3.35
[N1111][BTFA]@polymer 19.73 0.22 62 3.47
[N1114][Brl@polymer 23.48 0.25 65 341

Ci Tonset 6 Zso, Qst Zco,
2.393 209.7 73.84 7.51 12.7 0.12
2.479 211.5 62.96 7.09 17.9 0.15
2436 210.1 24.10 7.53 17.5 0.34
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infrared (FT-IR) spectra were measured on a Thermo Scientific Nicolet
iS 20 IR spectrometer in the region of 4000-400 cm™ .

2.5 | Gas adsorption

The SO, adsorption and desorption were measured according to

7 and the schematic diagram of the process was

the literature,*
illustrated in Figure 2. SO, adsorptions on IL@polymers were per-
formed according to the following dynamic method under different
partial pressures and temperatures; the mass of samples was mea-
sured on an electronic balance with an accuracy of +0.0001 g.
IL@polymer with known mass, m4 in grams, was added into the
U-shaped tube with an inner diameter of 7 mm. The tube was
immersed in a water bath with desired temperatures. Then, SO,
with different concentrations was introduced into the tube with a
flow rate of 60 mL min~? through stainless steel pipelines. Aque-
ous NaOH solution was used to absorb SO, and purify the exhaust
gas. The mass of SO,-adsorbed IL@polymer, m, in gram, was mea-
sured during adsorption until it no longer changed, indicating that
the equilibrium was obtained. The adsorption capacity (Z, in
mmol g~?) can be calculated by:

(my—mq) =+

Z= 64 x 1000
mq

Desorptions of SO, were performed at 80°C under 100% N, at
1 bar. The uncertainty of mass was measured to be +0.07.

The water adsorptions on IL@polymers were performed accord-
ing to the similar dynamic method as SO, adsorption. Briefly, 100 vol
% N, with a flow rate of 100 mL min~? was bubbling through the
deionized water and introduced into the tube, containing IL@polymer
with known mass, through stainless steel pipelines. The mass of H,O-
adsorbed IL@polymer was measured during adsorption until it no lon-

ger changed, indicating that the equilibrium was obtained. The CO,

AI?BIFJ R NALJLHS

adsorptions on IL@polymers were performed on Micromeritics 3Flex

using the volumetric method.

3 | RESULTS AND DISCUSSION

3.1 | Structural characterization of IL@polymers
All three polymers [N1111][TTFA]@polymer, [N1111][BTFA]@polymer,
and [N4114][Brl@polymer were synthesized via acid-base neutraliza-
tion with corresponding acids from the raw material [N1111][OH]
@polymer. The surface morphology of well-synthesized IL@polymer
adsorbents was characterized by SEM (Figure 3). It can be seen that
the macroreticular internal structures and the macropores (>50 nm),
originating from “glueing” of polymer nodules.*® The SEM images also
show that a large number of mesoporous-macroporous structures are
uniformly distributed on the surface of the materials, and these
porous structures are conducive to the exposure of more adsorption
sites and provide a micro-reactive environment for SO, capture. The
results of energy dispersive spectroscopy (EDS) elemental mapping
suggested the successful synthesis of [N4114][TTFA]J@polymer,
[N1111][BTFA]@polymer, and [Ni111][Brl@polymer. Besides, in the
XPS survey spectra, the characteristic peaks of Br 3d, S 2p, C 1s, N 1s,
O 1s, and F 1s are located at 68.1, 164.9, 285.2, 402.8, 531.8, and
688.1 eV, respectively, also suggesting that the three modified
polymers were successfully synthesized (Figure 4). According to the
content of N in IRA-900 via elemental analysis, the contents of IL-
moieties in these IL@polymers were around 2.4 mmol g~ (Table 1).
According to the IUPAC classification, the N, adsorption-
desorption isotherms show a type Ill shape (Figure 5),*° and the
BET surface area (Sget, in m2 g~1), the total pore volume (Viqt, in
cm® g71), as well as the average pore size (D,,, in nm) were col-
lected in Table 1. It can be seen that the adsorbate uptake

increases exponentially with increasing pressure, and the increase

continues until the relative pressure reaches unity, resulting in the

(A)
100 +
80
X 60 -
2
=
D40
2
FIGURE 6
Thermogravimetric analysis 20
curves (A) and water contact
angles (B) of [N1114][TTFA] 0
T = T

—— [N41141][TTFAJ@Polymer
——[N4414][BTFA]J@Polymer
—— [Nyy44][Bri@Polymer

(B) !

[N4114][TTFA]J@polymer

[N1114][BTFA]@polymer

@polymer, [N1114][BTFA]
@polymer, and [N1111][Br]
@polymer.

— . .
0 100 200 300 400 500 600 700 800 900 59, 10°
T (°C) [N1444][Bri@polymer
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FIGURE 7 SO, adsorption isotherms of [N1111][TTFA]@polymer
(A), [N1111][BTFA]J@polymer (B), and [N1111][Brl@polymer (C).

adsorbate-adsorbate interaction being big compared to the
adsorbate-sorbent interaction.’®>* The obtained specific surface
areas of [N1114][TTFA]J@polymer, [N1111][BTFA]J@polymer, and

TABLE 2 Comparison of SO, capacities of typical SO,-philic ILs

and PILs.
SO, capacity
(mmol g~ %)

Sorbent T(°C) 1bar 0.1 bar  Ref.
[N1114][TTFA]@polymer 20 7.51 4.02 This work
[N1111][BTFA]@polymer 20 7.09 3.94 This work
[N1111][Brl@polymer 20 7.53 2.99 This work
[N1111][OH]@polymer 20 10.39 1.65 This work
[Psss14llim] 20 875 3.75 35
[Pgss14][4-Br-PhCOO] 20 603 243 £
[Psss14][4-CN-PhCOOQ] 20 620 173 55
[Pses14l[4-CHO-PhCOO] 20 569 252 sé
[K(TX-7)][SCN] 20 632 161 57
[Pses14l[SCN] 20 594 203 &3
[E1mim][MeSO3] 30 973 - 59
[Et,NEmim][PF] 30 641 281 0
[Et,NEmim][Tf,N] 20 607 192 61
[Psss14l[Phth] 20 703 072 62
[P4442][PySO3] 20 947 151 63
[LI(TDA-1)I[Tf,N] 20 740 215 o4
[Na(PEG-400)][Tetz] 30 686 278 63
P(ITMG][A]) 25 406 — 66
P([TMG][A]-co-MBA) 20 469 - 67
HNIP-DCX-1 25 480 156 68
[MFM-305-CH][CI] 25 516 — 69
ICTF-[CI] 25 6.5 - 42
P([allyl-HMTA][Br]-DVB) 25 610 099 70
P(DIVIMC][Br]) 25 778  1.56 38
TBM-Bentriz 25 583 298 7
P(EVIm-Br) 25 10.51  3.29 72

[N1111][Brl@polymer are measured to be 19.36, 19.73, and
23.48 m? g~1, respectively, while the average pore sizes for these
polymers were measured to be 63, 62, and 65 nm, suggesting the
limited surface areas and macropore sizes of these IL@polymer
adsorbents. From [Br]-based IL@polymer to conjugated carbanion-
derived IL@polymers, the BET surface area, the total pore volume,
and the average pore size were all slightly decreased with the
increase of anion size.

TGA, measuring the mass change of a sample as a function of
temperature or time, could be used to test the thermal stability
of IL@polymers. It can be seen from Figure 6A that the trends of all
three weight loss curves are similar, and the degradation behavior
including three stages separated by 100 and 250°C are the evapora-
tion of water, the degradation of ammonium IL-moieties, and the deg-
radation of polymer backbones.*® Overall, the TGA results indicate
that the three IL@polymers have excellent thermal stability and can
be heated to satisfy the desorption of SO, by heating the adsorbent,
further supporting their potential for reversible SO, adsorption. The
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results showed that the onset decomposition temperatures (Tonset)
were measured to be 209.7, 211.5, and 210.1°C for [N1114][TTFA]
@polymer, [N1111][BTFA]@polymer, and [N1141][Brl@polymer, respec-
tively, indicating high thermostability. To determine the hydrophobic-
ity property, the water contact angles for [Nq111][TTFA]@polymer,
[N1111][BTFA]@polymer, and [N1111][Brl@polymer were measured to
be 73.84°, 62.96°, and 24.10°, respectively, indicating the conjugated
carbanion-derived IL@polymers are more hydrophobic than bromide-
based IL@polymer (Figure 6B).>? The solubilities of ILs [N4414][TTFA],
[N1111][BTFA], and [N4111][Br] were also tested to verify the hydro-
phobicity property of these IL@polymers. The solubilities of [N1111]
[TTFA] and [N4111][BTFA] were measured to be 0.61 and 0.81 g IL
per 100 g H,O, respectively, while that of [N1144][Br] was measured
to be 31.84g IL per 100g H,O, suggesting that conjugated
carbanion-derived IL@polymers are more hydrophobic than [Br]-

based IL@polymer.

3.2 | SO, adsorption isotherms

SO, capture at different temperatures and partial pressures by these
IL@polymers was measured, and the SO, adsorption isotherms of
IL@polymers are illustrated in Figure 7, suggesting the similar trends
of SO, adsorption performances by these IL@polymers. SO, adsorp-
tion capacities decreased with the decrease of SO, partial pressure.

For SO, adsorption on conjugated carbanion-derived IL@polymers,

26
T e o)
24 y=1187.1221x-1.5114 R —0,95‘".““9, ................... v
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224 e v RO >
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FIGURE 8 Linear correlation between In K4 and 1/T.

TABLE 3 The thermodynamic
parameters, including standard enthalpy

change (AH°, in kJ mol™1), standard IL@polymer

o 3 -1 -1
entropy ch?nge (AS°, in Jmol™ K™%), and [Ny, ][TTFA]@polymer
standard Gibbs free energy change (AG®,
in kJ mol~?) under different temperatures [N1114][BTFAJ@polymer
(T, in°C) calculated from equilibrium [Ny1111][Brl@polymer

constant (Keq,, dimensionless).

AI?BIFJ R NALm

the SO, absorption capacity of [N;111][TTFA]J@polymer at 20°C

1 under 1 bar to 3.02 mmol g~* under

decreased from 7.51 mmol g~
0.05 bar, indicating that captured SO, could be desorbed under low
partial pressure. While for SO, adsorption on [N1411][Brl@polymer,
the SO, absorption capacity at 20°C decreased from 7.53 mmol g~*
under 1 bar to 1.91 mmol g~ under 0.05 bar. The results suggested
that IL@polymers with conjugated carbanions exhibited more efficient
SO, adsorption under low partial pressure. The comparison of the
SO, capture performance with other typical ILs and PILs can be found
in Table 2, which indicated that the conjugated carbanion-derived
IL@polymers could efficiently capture SO,, especially under low par-
tial pressure. The effect of adsorption temperature on SO, capture
capacity of these IL@polymers was also investigated. The results
showed that the SO, adsorption capacity of each IL@polymer
decreased with the increase of absorption temperature, which is
attributed to the exothermic nature of adsorption. Thus, the interac-
tive binding forces between adsorbate and adsorbent decrease. For
instance, SO, capacity of [N1111][TTFA]@polymer under 1 bar
decreased from 7.51 mmol g~ at 20°C to 5.98 mmol g~! at 50°C,
indicating that the loaded SO, can be released under high tempera-
ture. Additionally, SO, capture by raw material [N1111][OH]@polymer
at 20°C was also determined with the capacities of 0.67 and
10.39 mmol g~ ! under 0.05 and 1 bar, respectively, due to the strong
basicity of [OH] anions, which may result in difficult desorption.>®

Adsorption isotherm models can provide mechanism information
of the adsorption process, which is important for the design of
adsorption system.”®>”4 Here, the adsorption isotherms, formed from
equilibrium adsorption capacity (e, in mmol g~2) at different tempera-
tures and partial pressures, on these IL@polymers were correlated
using the Langmuir model, Freundlich model, and Sips model based on
the following equations, respectively”®:

q ZQmaxXKLXPe
N 14Ky xPe

de =Kg ><P2’F

_Qmax ><KS XP,:S
¢ 14K x P

Where gpmax represents the maximum adsorption capacity in mmol g~2,
P, denotes the equilibrium pressure in bar, K, in bar! is the Langmuir
constant, Kg in mmol g*1 bar ™ is the Freundlich constant, Ks in
bar™™s is the Sips constant, Ng and Ns are dimensionless parameters

that qualitatively characterize the heterogeneity of the adsorbate-

AG°

AH° AS° R? 20°C 30°C 40°C 50°C
-9.75 —13.09 0.946 -5.84 —5.87 —5.69 -5.45
-9.87 —12.57 0.953 —6.12 -6.16 -5.93 -5.77

—13.35 —32.65 0.911 -3.76 -3.40 -3.34 —2.68
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354 a el R
< R V'-..~-. -__.~:.’
3049 o. . W . < predicting the adsorption performance of heterogeneous systems at a
25 ) A . v wide range of pressures. The fitting results of these models are also
O - A illustrated in Figure 7 while the relevant parameters and correlation
2.0 B e coefficients (R?) are listed in Appendix S1. It can be seen that all fitting
15 results were in agreement with the experimental data, and the Sips
model shows the best fit with a high correlation coefficient (R2>0.99)
1.0
0‘0631 0.0'032 0.0'033 0.0634 among these models. Additionally, the larger is Ns the more heteroge-
1T (K'1) neous the system is. As the listed values of Ns are all greater than
unity (Ns >1), all SO, adsorptions on IL@polymers are heterogeneous.
FIGURE 9 Inp versus 1/T for estimation of isosteric adsorption

heats of SO, on [N14141][TTFA]@polymer (A), [N1111][BTFA]@polymer
(B), and [N1114][Brl@polymer (C).

adsorbent system. Compared to the single-parameter Langmuir and
Freundlich models, the three-parameter Sips model is clearly the com-
bination form of the aforementioned two models and is suitable for

3.3 | SO, adsorption thermodynamics

In order to better understand the adsorption mechanism, the thermo-
dynamic parameters such as the standard enthalpy change (AH°, in
kJ mol~1), the standard Gibbs free energy change (AG®, in kJ mol™2),
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and the standard entropy change (AS°, in J mol~* K1) were estimated
by the following equations, using the equilibrium constant (K,

dimensionless):

AS°  AH°
InKea ="~ R7
AG® = —RTInKeq

Although the aforementioned models are suitable for calculating
the thermodynamic parameters, the constants K|, K¢, and Ks of the
Langmuir, Freundlich, and Sips are dimensional, and it is necessary to
convert those constants from dimensional (with a unit) to dimension-
less (without unit) before applying them as the thermodynamic equi-
librium constant for the calculation. It is reported that K¢ is not
suitable for calculation because its unit cannot be converted to dimen-
sionless easily, and K.q can be calculated from K and Ks according to

the following equations,”®””

Kequ = KL X Po

Keq,S = N{/ Ks x P°

P° in bar is the standard pressure (P° = 1 bar). The curves of In Keq
versus 1/T are plotted in Figure 8. Although there is better conformity
of the adsorption process with the Sips model than with the Langmuir
model, the estimated data (from the plots of In Keqs vs. 1/T) proved to
be unrealistic and hence unreliable and not considered in this work.”®
The obtained AH°, AS°, and R? based on Keq as well as AG® are listed
in Table 3. The negative values of AG° indicated the favorable SO,
adsorptions in each IL@polymer adsorbent under the experimental condi-
tions, while the negative values of AH° indicated the exothermic adsorp-
tion process and the physical interaction between SO, and each
IL@polymer adsorbent. In addition, the negative AS° values indicated that
the degree of disorder of the system becomes smaller due to the interac-
tions. The spontaneity of the adsorption process is governed by the AG,
following the equation AG° = AH° — TAS°. Here, AH° <0 and
AS° < 0O, but the value of |AH°| was calculated and found to be
higher than the value of |TAS°|. Thus, the value of AH° — TAS® is
always negative, indicating that the adsorption processes were
spontaneous. Take [N4114][TTFA]J@polymer as an example; the
values of AH° and AS° were calculated to be —9.75 kJ mol™?
and — 13.09 J mol~* K™%, respectively, resulting in the values of
AH® — TAS® in the range of —5.9 to —5.5 kJ mol~1. Therefore, the
sign of AG° was determined by that of AH®. Thus, the SO, adsorp-
tion is an entropy-driven process.

As a key thermodynamic quantity in the adsorption process, the isos-
teric heat (Qg, in kJ mol™Y) could be obtained from the SO, adsorption
isotherms at 20, 30, 40, and 50°C using Clausius-Clapeyron equation:

7Qst
Inp= RT+C

where p (in bar) is the pressure at a fixed adsorbed amount of SO,

(2-5 mmol g~* with an interval of 0.5 mmol g~ %), T is the adsorption

AI?BIFJ R NALJ9;f15

temperature in K, R is the gas constant with the value of
8.314 Jmol 1 K™%, and C is a constant. The fitting plots of Inp
against 1/T (in 1 K™1) were depicted in Figure 9 with good straight
lines at the aforementioned adsorbed quantities for each IL@poly-
mer, and Qg could be obtained from the slope. The relationship
between isosteric heat of SO, adsorptions on the IL@polymers and
the adsorbed amount of SO, was illustrated in Figure 10A. The
results showed that the values of initial Qs of these IL@polymers are
slightly lower than 20 kJ mol™2, but higher than the values of AH°, pos-
sibly because of the host-guest interactions.”” The low values of Qg
suggested that the adsorption processes are weak chemical and SO,
could be desorbed relatively easily from the adsorption sites as well as
the sorbents could be regenerated energy-savingly.2° Moreover, the Qg
of these IL@polymers is lower than other reported adsorbents, such as

metal-organic frameworks (MOFs) 81783

which the Q. values are usu-
ally higher than 20 kJ mol~* (Figure 10B). The results are consistent
with the large pores of IL@polymers, reducing the strength of host-
guest interactions.®* Interestingly, the value of Qg gradually increases
with the increase of SO, loading, suggesting the surface uniformity of
these IL@polymers and the partial structural changes of the network

during SO, loading.®®

3.4 | Adsorption-desorption SO, cycles

It is known that the cycle stability plays an essential role in adsor-
bents' practical applications. In order to evaluate the reversibility
of these IL@polymers, cycles of adsorption-desorption of SO, were
performed. The adsorptions were tested at 20°C and 0.05 bar SO,,
and desorptions were performed at 80°C and 1 bar N,, and the
results were illustrated in Figure 11. It shows that the capacities of
SO, adsorption on conjugated carbanion-derived IL@polymers were

all around 3 mmol g™, indicating that these functional IL@polymers

35k [N4111][TTFAJ@Polymer
. [N1144][Brl@Polymer

[N44111][BTFAJ@Polymer

30

25

20

S0, adsorption capacity (mmol g™)
o
v
A
7

10 F
0.5 |
0.0 v v . r v v
1 2 3 4 5 6
Number of Cycle

FIGURE 11 Cycles of adsorptions at 20°C and 0.05 bar SO, and
desorptions at 80°C and 1 bar N,.
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could be highly recycled with the SO, adsorption capacity remaining 3.5 | SO, adsorption mechanism
steady. Thus, the SO, adsorptions by these IL@polymers are highly
reversible. As aforementioned before, the average pore sizes of these IL@poly-

mers were higher than 50 nm and their BET surface areas were lower

than 25 m? g1 Therefore, all these sorbents were found to be

[N444,][BTFA]@Polymer

macroporous materials with low BET surface areas. Thus, it is crucial

[N [BTFAJ@Polymer + SO, to investigate the mechanism of SO, adsorption on these IL@poly-

..A_‘\//J ,,,,, o
§ Ny [TTFAI@Polymer R tions were used as typical methods to study the SO, adsorption
\ YT T W/ \\,( TV .
// WP mechanism.

[N11:11][TTFAJ@Polymer + SO, © The SEM and mapping images after SO, adsorption in these

IL@polymers were also measured (Figure S1). Compared with the

mers. Here, SEM and mapping, FT-IR, and quantum chemical calcula-

. [N:ul[Bri@Polymer morphologies of neat IL@polymers, that of IL@polymers after SO,

Transmittance

\ \ﬁ/ ' capture seemed to show no significant change. Besides, the mapping
[N4444][Brl@Polymer + SO, : :

I of these samples indicated that SO, molecules were uniformly

11§76 9554 adsorbed on the surface of the IL@polymers. In addition, the adsorp-
tion mechanism was analyzed by FT-IR spectra. Figure 12 shows the

T T T T T T T T T T T T -
4000 3500 3000 2500 2000 1500 1000 FT-IR spectra of these IL@polymer sorbents before and after
- the adsorption. Clearly, compared with the spectra of SO,-free
Wavenumber (cm’') .
IL@polymer samples, two peaks at 1176 and 954 cm™~ appeared as a
FIGURE 12  FT-IR spectra of [N1111][BTFAl@polymer, [N1111] result of SO, adsorption, which could be a;sli7glned to the vibrations of
[TTFA]J@polymer, and [N1111][Brl@polymer before and after the S=0 and S-O bonds, respectively.”""" According to the

adsorption of SO, at 20°C and 1 bar. literatures,®®®” these typical peaks indicated the charge-transfer

(A) (B) (C)
? ’

3.006

‘ ............ 167.3°

[TTFA] + CO, [BTFA] + CO, [Br] + CO,

FIGURE 13 Optimized structures based on the anions and SO, or CO.. (A), [TTFA] + 350,; (B) [BTFA] + 3SO,; (C) [Br] 4+ 350y;
(D) [TTFA] 4+ CO»; (E) [BTFA] + CO; (F) [Br] + CO,. Note that the van der Waals radii of atoms are 1.70 A for C (gray), 1.20 A for H (white),
1.52 A for O (red), 1.80 A for S (yellow), 1.47 A for F (green), and 1.85 A for Br (dark red), respectively.”?
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quasi-chemisorption of SO, between IL@polymers and SO,. That is

consistent with the results of isosteric heat analysis
(Qqt < 20 kJ mol™1), which leads to the quasi-chemical interaction of
anions with SO,. Thus, the charge-transfer interaction between active
sites on IL@polymer and SO, may attribute to a kind of quasi-
chemisorption of SO,.2 Furthermore, dispersion-corrected density
functional theory (DFT-D3(BJ)) calculation at the B3LYP/6-31++G
(p,d) level®8° using the Gaussian 16 program’® was used to study
the interactions between SO, and anions ([TTFA], [BTFA], and [Br]),
and the optimized structures of [TTFA] + 350,, [BTFA] + 3SO,, and
[Br] + 35S0, are illustrated in Figure 13A-C. Clearly, all the distances
between the S atom in SO, and the active atom in anions were pre-
dicted to be shorter than the sum of the radii of two atoms (18%-
28%), suggesting that all these anions could interact with three SO,
molecules. These results are consistent with the results of Q; calcula-
tion, which suggest the weak chemical interactions between adsor-

bate and adsorbents.
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3.6 | SO,/CO, selectivity

The performances of CO, capture at 20°C under different partial
pressures were also determined to test the SO,/CO, selectivity
(Figure 13A-C). It is illustrated that the SO, uptake of each adsorbent
at 20°C under high pressure (1 bar) was higher than 7 mmol g%, while
the CO, isotherm on each adsorbent was obviously flatter and dis-
played only 0.1-0.4 mmol g~ even at 20°C and 1 bar. Additionally,
CO, capacities of conjugated carbanion-derived IL@polymers
(0.12 mmol g=* on [N1114][TTFA]@polymer and 0.15 mmol g~ on
[N1111][BTFA]@polymer) were much lower than that of bromide-
based [N1444][Brl@polymer (0.34 mmol g~ 1), probably due to the dis-
persed negative charges on conjugated carbanion anions while the
concentrated negative charge on bromide anion resulted in the weak-
ened carbanion-CO, interaction. Besides, the calculated 2O=C=0
angles in the optimized structures of [TTFA] + CO,, [BTFA] + CO,,
and [Br] + CO, amount to 173.2°, 173.2°, and 167.3°, respectively,
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7.09
‘I:\ 74—m— SO, /-A
g’ —e—CO, ./'
g °] /l/
> 97 e
S \
./
© / 50.6-fold
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) ' y=23.55281x+0.98144 R?=0.79 (0~0.2 bar)
ge} s
< 11
y=0.11259x+0.02461 R2=0.97(0~1 bar) 0.15
0+ @00~-0-0—-0—-0-0-0—-0—0—0—-0—-0-0—-0—0—0-0-and
T T ) 1 1 T 1
0.0 0.2 0.4 0.6 0.8 1.0
D Partial pressure (bar)
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FIGURE 14 Adsorption curves of SO, and CO5 by [N1111][TTFA]@polymer (A), [N1111][BTFA]@polymer (B), and [N41111][Brl@polymer (C) at
20°C. (D) Comparison of the adsorption amount ratio of SO,/CO, at 1 bar for IL@polymer sorbents (at 20°C) and typical reported MOFs

collected in ref. [80] (at 25°C).
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indicating that [Br] anion could interact with CO, more efficiently (A) 0.30
than [TTFA] and [BTFA] anions (Figure 13D-F). Thereby, the adsorp- o a
tion amount ratios of SO,/CO, at 20°C and 1 bar were calculated to 0.25 D/
be 62.6-fold, 50.6-fold, and 22.1-fold for [N1111][TTFA]@polymer, /
[N1114][BTFAl@polymer, and [N4411][Brl@polymer, respectively. Here, 0.20 ~ _—————
the “fold” could be used to describe the selectivity of SO, over CO,, /:72/0———0

k.8% Compared with most MOFs, these D/ = /A s

according to Farha et al's worl
conjugated carbanion-derived IL@polymer sorbents exhibited more
efficiency for SO,/CO, separation (Figure 14D).

To evaluate the gas-selective separation performance of IL@poly-
mer adsorbents, Henry's theory was used to calculate SO,/CO, selec-
tivity.”® As shown in Figure 14A-C, the adsorption behavior of both
SO, and CO,, gas nearly obeys Henry's law in the low-pressure range
(p < 0.2 bar), and the calculated Henry's law selectivity for SO,/CO,
at 20°C for [N4114][TTFA]J@polymer, [N1111][BTFA]@polymer, and
[N1111][Brl@polymer was 191, 209, and 62, respectively. Clearly, the
SO,/CO, Henry's law selectivities for conjugated carbanion-derived
[N1111][TTFA]@polymer and [N1111][BTFA]@polymer were both more
than three times that for bromide anion-derived [N4111][Brl@polymer,
indicating the highly efficient selective SO, capture by conjugated

carbanion-derived IL@polymer adsorbents.

3.7 | Effect of water on SO, adsorption

Due to the different hydrophobicity of these IL@polymer adsorbents,
the performances of water adsorption were also studied, and the
results are illustrated in Figure 15. Weight capacities (in g g~%) and
molar capacities (in mmol g~1) were both calculated. For industry
application, the weight capacities of SO, (0.05 bar) were measured to
be 0.19, 0.19, and 0.12 g g,"! while that of water were measured
to be 0.15, 0.17, and 0.27 g g~ * for [N1111][TTFA]l@polymer, [N1111]
[BTFA]@polymer, and [Nq411][Brl@polymer, respectively. Thus, the
ratios of SO,/H,O were calculated to be 1.27, 1.12, and 0.44. Clearly,
the results indicated that the bromide anion-derived [N4111][Br]
@polymer adsorbent is more efficient for the adsorption of water than
SO,, while the conjugated carbanion-derived [N1111][TTFA]@polymer
and [N41141][BTFA]@polymer adsorbents are highly efficient for the
adsorption of SO, than water. Additionally, the difference in capture
capacity between SO, and water for [N1111][TTFA]J@polymer adsor-
bent is larger than that for [N1111][BTFA]@polymer, exhibiting obvi-
ous advantages in SO,/H,O selective adsorption by tunable
conjugated carbanion-derived IL@polymers. It is known that the molar
mass of H,O (18 gmol™Y) is much smaller than that of SO,
(64 g mol™1), meaning water contains 3.5 times as many molecules as
SO, for the same mass. Here, the molar capacities of SO, were calcu-
lated to be 3.02, 2.99, and 1.92 mmol g~*, while that of water were
calculated to be 8.49, 9.59, and 14.82 mmol g~ for [Nq114][TTFA]
@polymer, [N1111][BTFA]@polymer, and [N1111][Brl@polymer, respec-
tively. Thus, the ratios of SO,/H,O were calculated to be 0.36, 0.31,
and 0.13, also suggesting that conjugated carbanion-derived adsor-
bents are highly efficient for the selective adsorption of SO,. There-

fore, through adjusting the structure of anions of PILs, the

o
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FIGURE 15 Capture of 5 vol% SO, or water at 20°C and 1 bar
by IL@polymers in g g~ (A) and mmol g~ * (B).

hydrophobicity of these IL@polymer adsorbents could be tuned, and
the efficient selective adsorption of SO, could be obtained by func-
tional IL-based materials.

4 | CONCLUSION

In summary, two kinds of novel conjugated carbanion anion-derived
IL-based porous polymers were developed for selective SO, capture.
Surface morphology, porosity, contact angle, and stability were
systematically investigated, exhibiting the macroreticular internal
structures and the macropores (>50 nm) as well as an enhanced
hydrophobicity. The effect of SO, partial pressure and temperature
on SO, adsorption capacity by IL-derived polymers was investigated,
and the Sips model is suitable for predicting adsorption performance.
Compared with bromide-based IL@polymer, an enhanced hydropho-
bicity as well as the efficient capacity of SO, (>7 mmol g~%) and high
selectivity of SO,/CO, (62.6-fold) and SO,/H,O were obtained by
conjugated carbanion-derived [N1111][BTFA]J@polymer and [N4114]
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[TTFA]@polymers through carbanion-SO, interaction. Moreover, the
calculated values of the initial isosteric heat of adsorption were in
the range of 10-20 kJ mol~! and increased with the increase of SO,
loading. Thus, through heating or bubbling N, through IL@polymer
sorbents, the captured SO, was easy to desorb and the IL-derived
polymers could be recyclable. Besides, the results of FT-IR investiga-
tions suggested the SO,--- IL@polymer charge-transfer quasi-chemical
interaction. This method using conjugated carbanion functional
groups opens a door to obtain enhanced hydrophobicity, SO, capture
capacity as well as excellent SO,/CO, selectivity and SO,/H,0 selec-
tivity by IL-based iPOMs.
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