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Abstract

We demonstrate a method for the enhancement of CO2 photoreduction. As the driving force of a photocatalytic reaction is from solar light, the
basic idea is to use concentration technology to raise the incident solar light intensity. Concentrating a large-area light onto a small area cannot
only increase light intensity, but also reduce the catalyst amount, as well as the reactor volume, and increase the surface temperature. The
concentration of light can be realized by different devices. In this manuscript, it is realized by a Fresnel lens. The light penetrates the lens and is
concentrated on a disc-shaped catalyst. The results show that both the reaction rate and the total yield are efficiently increased. The method can
be applied to most CO2 photoreduction catalysts, as well as to similar reactions with a low reaction rate at natural light.

Video Link

The video component of this article can be found at https://www.jove.com/video/58661/

Introduction

The utilization of fossil fuels is accompanied by large amounts of CO2 emission, contributing greatly to global warming. CO2 capture, storage,
and conversion are essential to reduce the CO2 content in the atmosphere1. The photoreduction of CO2 to hydrocarbons can reduce CO2,
convert CO2 to fuels, and save solar energy. However, CO2 is an extremely stable molecule. Its C=O bond possesses a higher dissociation
energy (about 750 kJ/mol)2. This means that CO2 is very hard to be activated and transformed, and only short wavelength lights with high
energy can be functional during the process. Therefore, CO2 photoreduction studies suffer from low conversion efficiencies and reaction rates at
present. Most reported CH4 yield rates are only at several µmol·gcata

-1·h-1 levels on a TiO2 catalyst3,4. The design and fabrication of photocatalytic
systems with high conversion efficiency and reaction rate for CO2 reduction remain a challenge.

One popular area of research into CO2 photoreduction catalysts is to broaden the available light band to the visible spectrum and enhance the
utilization efficiency of these wavelengths5,6. Instead, in this manuscript, we try to increase the reaction rate by enhancing the light intensity.
As the driving force of a photocatalytic reaction is solar light, the basic idea is to use concentration technology to raise the incident solar light
intensity and, therefore, increase the reaction rate. This is similar to a thermocatalytic process, where the reaction rate can be increased by
increasing the temperature. Of course, the temperature effect cannot be not increased infinitely, and likewise with the light intensity; a major goal
of this research is to find a suitable light intensity or concentration ratio.

This is not the first experiment that uses concentrating technology. In fact, it has been widely used in concentrating solar power and waste water
treatment7,8. Biomaterials such as beech wood sawdust can be pyrolyzed in a solar reactor9,10. Some previous reports have mentioned the
method for CO2 photoreduction11,12,13. One sample exhibited a 50% increment in the product yield when the light intensity was doubled14. Our
group has found that concentrating light can raise CH4 yield rate with an up to 12-fold increase in intensity. In addition, pretreatment of catalyst
before reaction by concentrating light can further increase the CH4 yield rate15. Here, we demonstrate the experimental system and method in
detail.

Protocol

Caution: Please consult all relevant Material Safety Data Sheets (MSDS) before operation. Several chemicals are flammable and highly
corrosive. Concentrating light can cause harmful light intensity and temperature increases. Please use all appropriate safety devices such as
personal protective equipment (safety glasses, gloves, lab coats, pants, etc.).

1. Catalyst Preparation

1. Preparation of TiO2 by anodization
 

Note: Anodization uses metal foils and a Pt foil as two counter electrodes. The two electrodes are put into the electrolyte. Using electricity, the
metal foils at the anode site are oxidized.
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1. Dissolve 0.3 g of NH4F and 2 mL of H2O into 100 mL of glycol in a 200-mL beaker with a stirrer to form the electrolyte. Put the beaker
with the electrolyte into a 45 °C water bath.

2. Trim the Ti foil (50 x 250 mm size) with scissors to 25 x 25 mm.
3. Polish the Ti foil surface with a 7,000-mesh sandpaper to remove the surface impurities.
4. Submerge the Ti foil in a volumetric flask containing 15 mL of ethanol, then a flask with 15 mL of acetone, then treat it for 15 min with

an ultrasonic cleaner. Take out the Ti foil, rinse it 3 - 5x with deionized water, and place it in a volumetric flask containing 20 mL of
ethanol.

5. Dissolve 10 mL of H2O, 5 mL of HNO3, 3 mL of H2O2, 1 mL of 18% wt (NH2)2CO, and 1 mL of 18% wt NH4F into a 100-mL beaker to
form a polishing solution.

6. Take out the Ti foil from the ethanol flask, rinse it 3x with deionized water, and put it into the polishing solution for 2 - 3 min. Remove the
Ti foil and wash it with deionized water for 3x.

7. Use an anode alligator clip to hold the pretreated Ti foil and another clip to hold a Pt foil (25 x 25 mm). Place the two foils face to face in
the electrolyte at a distance of 2 cm from each other. Turn on the direct-current (DC) stabilized current power source, tune the voltage
to 50 V, and electrolyze for 30 min.

8. After the anodization has finished, close the power and take out the TiO2 foil
9. Submerge the Ti foil in a volumetric flask containing 15 mL of ethanol, then a flask with 15 mL of acetone, then treat it for 15 min with

an ultrasonic cleaner. Take out the Ti foil, rinse it 3 - 5x with deionized water, and place it in a 50-mL crucible.
10. Put the crucible in an oven at 60 °C for 12 h to let the foil dry.
11. Calcine the TiO2 foil in a muffle furnace under 400 °C for 2 h with a heating rate of 2 °C/min.

2. Catalytic Tests and Product Analysis

1. Catalytic tests under concentrating light
1. Clean the stainless cylinder-shaped reactor (inner diameter = 5.5 cm, volume = 100 mL) with deionized water then dry it in an oven at

60 °C for 10 min, to ensure no interference from other carbon sources.
2. Take out the reactor from oven, add 2 mL H2O, a stirrer, and a catalyst holder (a small shelf that holds the catalyst in the reactor), and

put a quartz glass with pores (diameter = 2 cm) on the bottom of the holder and the TiO2 catalyst (diameter = 1 cm) on the center of the
quartz glass. Put a thermocouple through an opening on the reactor wall on the catalyst surface. Add a Fresnel lens on the top of the
holder and seal the reactor with a quartz glass window.

3. Put the reactor on the electromagnetic apparatus. Check the air tightness with nitrogen (N2).
4. Feed the CO2 (99.99%) into the reactor through a mass flow controller (MFC) and flush the reactor at least 3x to change the gas in the

reactor to CO2.
5. Place the Xe lamp 2 cm directly above the reactor, open the Xe lamp power and adjust its current to 15 A, and turn on the magnetic

stirrer switch to start the reaction.
6. Record the temperature change on the catalyst surface and in the gas.

2. Product analysis
1. Analyze the product every 1 h using a gas chromatography (GC), which is equipped with a flame-ionized detector (FID) and a capillary

column (see Table of Materials) for separation of C1-C6 hydrocarbons.
2. Calculate the number of products by the external standard line method. Before quantifying the product, build a standard curve of

methane (CH4).

3. Catalytic tests under concentrating light with pretreatment
 

Note: This procedure is similar to 2.1, with differences noted.
1. Wash reactor as in step 2.1.1.
2. Assemble reactor as in step 2.1.2, except without adding H2O.
3. Check the air tightness as in step 2.1.3.
4. Feed the pretreatment gas (such as air, N2 and H2O) into the reactor through an MFC and exchange the gas three times in succession

to make the reactor pure pretreatment gas.
5. Adjust the lamp as in step 2.1.5.
6. Keep the catalyst under light (10 concentrating ratio) illumination for 1 h in air atmosphere, then turn off the Xe lamp and magnetic

stirrer to finish pretreatment.
7. Feed the CO2 (99.99%) into the reactor as in step 2.1.4.
8. Inject 2 mL H2O into the reactor from the opening of the wall. Open the Xe lamp and magnetic stirrer power to start the reaction as step

2.1.5.
9. Record the temperature change as in step 2.1.6.

Representative Results

The original photocatalytic reactor system mainly contains two components, a Xe lamp and a stainless cylinder reactor. For the concentrating
light reactor system, we added a Fresnel lens and a catalyst holder, as shown in Figure 1. The Fresnel lens is used to concentrate the light in a
smaller area. As the light has been concentrated, the catalyst must be placed in a lit area; therefore, the catalyst is made into disc shape, and a
holder is used to hold the catalyst in this area.
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When the anodization method was used, a layer of TiO2 nanotube arrays would form on the foil. Figure 2 displays some characterization
results. However, more importantly, TiO2 arrays or other semiconductors could stick on the foil for easy cutting into discs of various sizes without
breaking.

We have tested the catalytic performance of as-prepared TiO2 and other semiconductors under concentrating light. Figure 3 displays typical
results of CH4 yield versus irradiation time under different concentration ratios (the ratio of the area of light source to the area of the catalyst).
The reaction rates of methane on different catalysts were significantly improved under the concentrating conditions. In the case of TiO2, the
maximum methane production rate reached 34.56 µmol·gcata

-1·h-1. In the case of Fe2O3, the maximum methane production rate reached 19.15
µmol·gcata

-1·h-1, which is about 18 times the rate under nature light15. If the catalyst is pretreated with suitable gas (air), the methane production
rate can be further increased. The effect is considered to be from the change in surface properties, but more research is needed to prove this.

 

Figure 1: Concentrating light reactor system for the photocatalytic reduction of CO2. (A) Photograph of the set-up. (B) Schematic of
the set-up. 1 = Xe lamp, 2 = tquartz glass window, 3 = Fresnel lens, 4 = holder, 5 = photocatalyst, 6 = stainless steel reactor, 7 = H2O, and 8 =
magnetic stirrer. Please click here to view a larger version of this figure.

 

Figure 2: X-ray diffraction (XRD, left) and scanning electron microscope (SEM, right) of TiO2 by anodization. Please click here to view a
larger version of this figure.
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Figure 3: Representative results for the CH4 yield at different concentration ratios (CR). Please click here to view a larger version of this
figure.

Discussion

Concentrating light reduces the light incident area and requires the use of a disc-shaped catalyst or a so-called fixed-bed reactor to hold the
catalyst. Since the light source is usually a round-shaped lamp, the shape of the catalyst should also be round. To obtain a round disc, it is
possible to press the powder into a disk by tableting or to change the metal foil into an oxide by anodization. The anodization method uses
electricity to oxidize the metal to an oxide semiconductor. As the metal precursor is already a sheet or foil, it can be trimmed more easily after
oxidation without breaking it.

Another factor that needs to be considered is the intensity measurements. We have not given the light intensity after concentration because the
use of a commercial detector of light intensity has some limitations. Such a detector often has a large surface area (ID = 1 cm) and a wall to
protect it, which will also block much of the light when it is used to measure the concentrating light. Also, when the concentrating ratio is large,
the small size of the Xe lamp (which often has an ID of 5 cm) will concentrate the light to a very small area, which may be smaller than the
detector area. Therefore, to further investigate the concentrating light technique, large-sized lamps will have to be used and the intensity detector
will have to be improved.

After the implementation of the protocol presented here, the CH4 yield rate was clearly enhanced using a suitable concentration ratio, which
means that the concentrated light can, to some extent, reduce the amount of catalyst. Of course, a higher light intensity is not always beneficial
for a catalytic performance; there is an optimal concentration ratio. Many factors may contribute to the appearance of the optimal concentration
ratio. It is known that for the photocatalytic reactions, the reaction order of the light intensity often decreases while the light intensity increases,
until it reaches zero. The high intensity also causes the rapid generation and recombination of e--h+ pairs.

To summarize, we have demonstrated a concentrating light method to improve CO2 photoreduction behavior. Considering the meaning of
reducing the catalyst amount and increasing the reaction rate, the method might be useful for the photocatalytic decomposition of H2O, the
reduction of CO2, and degradation of volatile organic compounds (VOCs) under real sunlight. At present, there are few studies on photocatalysis
under real sunlight, and the yield is very low. Concentration can vastly reduce the volume of the reactor and save costs; in addition, it can
increase the light intensity and temperature and, thus, greatly improve the photocatalytic efficiency, but it may be necessary to add an automatic
solar tracking system in consideration of the movement of sunlight.
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