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ABSTRACT

In the hydrothermal carbonization of carbohydrates, such as sucrose as raw

material in this study, activated carbon microspheres were synthesized by two

steps of hydrothermal carbonization (180 �C) and further heat treatment in

nitrogen (1000 �C). The main purpose of this study was to investigate the effects

of additives, such as H3PO4, ZnCl2, SnCl2, and CaCl2, on the surface charac-

teristics and toluene adsorption ability by adding them into the two processes.

The structural, chemical, and adsorption properties of sucrose-derived activated

carbon microspheres were characterized using nitrogen adsorption, scanning

electron microscopy, X-ray diffraction, Fourier transform infrared spectroscopy,

water contact angles, and dynamic adsorption of toluene. Results showed that

additives played important roles in the synthesis process. The addition of CaCl2
in the hydrothermal process, the specific surface area of activated carbon

spheres increased up to 1180 m2 g-1 compared with that of the blank sample

(i.e., 724 m2 g-1). By contrast, the addition of H3PO4 in the heat treatment

process increased the specific surface area to 1529 m2 g-1. Moreover, the

micromorphology of activated carbon microspheres was more homogeneous

when additives were added in the heat treatment process, but the activated

carbon microspheres were more hydrophobic when additives were added in the

hydrothermal process. These findings may help researchers to understand the

influence of additives on the preparation of hydrochar-derived activated carbon.

Introduction

Biomass plays an important role in sustainable

development because of its large reserves and

renewability. In addition to being a food source

and renewable raw materials, it can also be used

for the production of energy, carbon sequestration,

and preparation of hydrochar and activated carbon

(AC) [1].
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In recent years, the conversion of biomass into

valuable carbon materials by hydrothermal car-

bonization (HTC) [2–12] had become the focus of

many researchers because of its mild reaction con-

ditions, simple operation, low cost, water as solvent

without the need for organic solvent, high carbon

yield, as well as the hydrochar produced with less

ash, and more surface containing oxygen functional

groups [13]. In the HTC process, the carbohydrate

components in the biomass that is hydrolyzed,

dehydrated, and dissolved in water, followed by a

series of aldol reaction, cycloaddition reaction, and

condensation, finally a carbon-rich solid product was

obtained, namely hydrochar [7, 14].

However, hydrochar has a less aromatic structure,

poor thermal stability, a low specific surface area, and

underdeveloped porosity, which limit the exploita-

tion of hydrochar for practical applications [15].

Therefore, methods to improve the yield of

hydrothermal carbon materials, surface area, and

porosity are necessary. A number of studies have

been conducted using catalysts for biomass decom-

position under hydrothermal condition, either to

enhance the reaction rate or to tailor the path of

reaction for the conversion of biomass into specific

products [3–6, 16–20]. Recently, Quesada-Plata et al.

[21] investigated the ACs prepared through H3PO4-

assisted HTC from biomass wastes, and ACs of sur-

face areas above 2000 m2 g-1 and tunable pore size

distribution had been obtained. Several studies have

been conducted using hydrochar as a precursor to

prepare AC with well-developed porosity by subse-

quent physical activation or chemical activation

[8, 14, 22–24]. Jain et al. [23, 25, 26] reported

hydrothermal pre-treatment of coconut shell in the

presence of ZnCl2 to improve chemical activation and

show a significant improvement in mesoporous area

by as much as 80%.

As a typical representative of the biomass, carbo-

hydrates, such as glucose [11, 17, 27–29], fructose [28],

lactose [29], sucrose [24, 27], starch [6, 22, 27], and

cellulose [10, 11, 13, 16], which are low in price and

rich in nature reserves, have been extensively studied

to synthesize hydrochar by HTC as a carbon source.

In 2001, Wang et al. [30] first reported the synthesis of

carbon spherules with tunable size (in the 0.25–5 lm
range) by HTC of sucrose at 190 �C through regu-

lating the concentration of the sucrose solution and

the dwell time. Afterward, Sevilla et al. [10, 27, 31]

investigated the HTC of different saccharides

(glucose, sucrose, starch, and cellulose) and proposed

the mechanism of hydrochar formation and oxygen

functional groups (OFGs) based on the nucleation

model described by Mer [32]. Some time ago, Zhang

et al. [33] reported that using NH4Cl additive for

HTC of glucose, and after following KOH activation,

N-doped highly porous carbon with high specific

surface area (exceeding 3000 m2 g-1) was obtained,

which was really an efficient route.

Thus far, most studies focused on using sucrose as

carbon source to prepare hydrochar, and some also

investigated its further processing to prepare AC

[24, 30, 34]. The easiest approach for the preparation

of AC by hydrochar as precursors is thermal treat-

ment under an inert atmosphere [15, 35]; however,

adding small amount of additives in the HTC process

or subsequent heat treatment process to improve the

quality of carbon materials is rarely studied; addi-

tives may play a huge effect on the HTC or heat

treatment.

In this sense, the main objective of this work is to

hydrothermally synthesize the carbon microspheres

by using sucrose as carbon source and subsequently

performing heat treatment to develop porosity into

AC microspheres. Meanwhile, the influence of four

additives (H3PO4, ZnCl2, SnCl2, and CaCl2) on the

properties (such as pore structure, surface area, sur-

face morphology, and toluene adsorption capacity) of

AC microspheres was explored by adding a small

amount of these additives in the hydrothermal pro-

cess or heat treatment process. Moreover, the mech-

anism of the additives was also discussed.

Materials and methods

Preparation of carbon microspheres

A typical synthesis was conducted as follows:

Sucrose (6 g) was dissolved in 50 mL of distilled

water and stirred until completely dissolved. The

solution was then sealed into a 100-mL Teflon-lined

stainless steel autoclave. The synthesis was con-

ducted in a pre-heated furnace at 180 �C for 24 h.

Afterward, the autoclave was naturally cooled down

to room temperature, the obtained solid samples

were washed with distilled water and ethanol thrice

to remove the soluble residues and then placed in a

dry box at 110 �C for 2 h, and the hydrochar mate-

rials were obtained. The as-prepared hydrochar
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materials were further heated at 1000 �C (with heat-

ing rate of 10 �C min-1) for 2 h under N2 atmosphere

(N2 flow rate was 200 mL min-1) in a quartz tube

furnace. After cooling to room temperature, hydro-

char materials were washed with distilled water

thrice and dried at 110 �C for 6 h, and AC samples

were obtained; these are the blank samples. For the

addition during the hydrothermal process, 6 g of

sucrose and 1.5 g of additives were dissolved in

distilled water together before the hydrothermal

treatment. However, for the addition during the heat

treatment process, the hydrochar from 6 g of sucrose

and 1.5 g of additive was mixed uniformly before

heat treatment. The preparation process of AC is

illustrated in Fig. 1.

The hydrothermal process of sucrose represented

by HT and P, Zn, Sn, and Ca represented by H3PO4,

ZnCl2, SnCl2, and CaCl2, respectively. For example,

adding H3PO4 in the hydrothermal process and then

heat treatment was denoted as P-HT-1000, while

sucrose hydrothermally treated individually and

then heat-treated with H3PO4 was denoted as HT-P-

1000.

Characterization

The physical characteristics of the carbon materials,

including their specific surface area and pore volume,

were measured by N2 (g) adsorption in Micromeritics

3Flex micropore analyzer at 77 K in liquid N2. Before

the adsorption measurement, the samples were

degassed at 280 �C for 6 h. Surface area was calcu-

lated according to Brunauer–Emmett–Teller method

by using adsorption data acquired at a relative

pressure (P/P0) ranging from 0.05 to 0.25. The total

pore volume was estimated based on the amount

adsorbed at a relative pressure of approximately

0.995.

The XRD data of the samples were collected on a

PANalytical X’Pert PRO X-ray diffractometer

equipped with Ni-filtered Cu Ka (k = 0.1541 nm,

40 kV) radiation. Measurements were taken within

the 2h range of 10�–80� with a step size of 0.02� s-1.

Fourier transform infrared (FTIR) spectra were

obtained by KBr method, recorded on a Bruker Ver-

tex 70 infrared spectrometer, and scanned from 4000

to 500 cm-1.

Scanning electron microscopy (SEM) images were

acquired from Hitachi S4700 field emission scanning

electron microscope with a field emission voltage of

15.0 kV. Before the test, the samples were sprayed

with gold.

Transmission electron microscopy (TEM) images

were acquired from Tecnai G2 F30 S-Twin high-res-

olution transmission electron microscope with testing

acceleration voltage of 300 kV.

The water contact angles (WCA) of the samples

were measured using theta optical tensiometer (KSV

Instruments) and electro-optics with a closed-circuit

television camera connected to a computer (Attension

Theta software). Samples were placed on a sample

stage, and a droplet of distilled water (2 or 5 lL) was

deposited on the surface of the samples. A 2-lL water

droplet could not stick on the surface of several

samples. Consequently, the volume of the water

droplet was increased to 5 lL. The WCA of each

sample was measured thrice, and the average value

was recorded.

Adsorption performance test

Toluene was used as a model. Gaseous toluene was

generated by bubbling liquid toluene at 0 �C with

nitrogen gas flow. The flow volume was regulated by

a mass flow controller. The generated gaseous

toluene was transferred to a buffer by N2 stream and

then diluted with N2 at the required concentration.

The total flow rate is 100 mL min-1. The gaseous

toluene was then passed through an adsorption col-

umn at 30 �C. The column (10 mm in diameter,

Figure 1 Schematic diagram

of the preparation process of

activated carbon microspheres.
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200 mm in height) was packed with the as-prepared

AC of approximately 0.3 g. The inlet and the outlet

toluene concentrations were monitored online by

Agilent 7890 gas chromatograph equipped with a

flame ionization detector. The inlet toluene concen-

tration was controlled at 8200 mg m-3. Adsorption

capacity was calculated according to Eq. (1):

q ¼ F� C0 � 10�9

W
ts � r

ts

0

Ci

C0
dt

� �
ð1Þ

where q is the equilibrium adsorption capacity

(mg g-1), F is the flow volume of the carrier gas (N2)

(100 mL min-1), ts is the time to reach adsorption

equilibrium (min), W is the weight of the adsorbent

(g), C0 is the inlet concentration of the adsorbed gas

(mg m-3), and Ci is the outlet concentration of the

adsorbed gas (mg m-3).

Results and discussion

Characterization of hydrochar and AC
microspheres

Influence of additives on yields and textural properties

Table 1 shows the yields of carbon materials; yields

of the products were determined by Eqs. (2) and (3):

hydrochar yield%¼ amount of obtained solid after HTC ðgÞ
initial amount of sucrose ðgÞ

ð2Þ

AC yield %

¼ amount of obtained solid after heat treatment ðgÞ
initial amount of sucrose ðgÞ :

ð3Þ

Themass fraction of carbon in the sucrosewas 42.1%,

which can be considered as the theoretical yield. As

showninTable 1, theyieldofhydrocharwas36.5%, and

the reduction of quality was due to the dehydration of

sucrose under HTC conditions [36]. Moreover, the BET

surfaceof hydrochar couldnotbepresented, suggesting

that it nearly had no pore structure, which is common

for carbonaceous materials prepared from carbohy-

drates with hydrothermal methods [19, 29, 35]. This

result may be because sucrose formed into organic

polymer, such as hydrochar, after hydrolysis, poly-

merization, and aromatization; it did not cause pore

formation in the process, and it may also be related to

pore blockage [7, 15]. After heat treatment, the yield of

HT-1000 declined to 17% because the hydrochar was

further carbonized and dehydrated under high tem-

perature, as well as produced volatile substances. In

sharp contrast, the surface area of HT-1000 increased to

724 m2 g-1; the higher specific surface area resulted

from the dehydration of hydrochar and the generation

of volatiles, and small organicmoleculeswere removed

to generate porosity [15]; thus, heat treatment in N2

atmospherewas effective for developing the porosity of

hydrochar materials [36].

When additives were added in the hydrothermal

process, the yield of P-HT-1000, Zn-HT-1000, and

Table 1 Textural properties of carbon materials prepared by hydrothermal carbonization of sucrose

Samples Yield (%) Stotal
a (m2 g-1) Smicro

b (m2 g-1) Vtotal
c (cm3 g-1) Vmicro

d (cm3 g-1) Daver.
e (nm)

HT 36.5 –f – – – –

HT-1000 17.0 724 678 0.317 0.317 1.75

P-HT-1000 8.0 985 851 0.447 0.431 1.81

Zn-HT-1000 16.0 792 772 0.365 0.365 1.85

Sn-HT-1000 17.8 488 305 0.309 0.163 2.53

Ca-HT-1000 8.3 1180 840 0.556 0.425 1.88

HT-P-1000 9.4 1529 402 0.791 0.222 2.07

HT-Zn-1000 10.7 1323 624 0.660 0.341 2.00

HT-Sn-1000 11.6 889 268 0.450 0.148 2.03

HT-Ca-1000 17.7 483 483 0.219 0.219 1.82

a Total specific surface area, b micropore specific surface area, c total pore volume, d micropore volume, e average pore diameter, f below

the instrument measurement standard, the data were not given
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Ca-HT-1000 further decreased, but the specific sur-

face area increased, of which adding CaCl2 was

excellent, the surface area reached more than

1180 m2 g-1, and the surface area of Sn-HT-1000

decreased. This result may be because H3PO4, ZnCl2,

and CaCl2 played a catalytic role in the hydrother-

mal process and promoted the hydrolysis of sucrose

and polymerization of organic matters, which

resulted in hydrochar with better carbon skeleton, of

which CaCl2 is excellent, and CaCl2 did not enter

into the hydrochar finally, just acted as catalyst

(elemental analysis of the hydrochar showed that the

mass percent of Ca and Cl was 0.0148% and 0.0082%,

respectively, suggested that additives were almost

removed by washing).

Furthermore, when additives were added in the

thermal treatment process, the yield of HT-P-1000,

HT-Zn-1000, and HT-Sn-1000 decreased, the specific

surface area also improved, of which adding H3PO4

was excellent, and the specific surface area was the

largest that reached up to 1529 m2 g-1. Moreover, the

mesoporous volume and average pore diameter

increased, while the surface area of HT-Ca-1000

declined. Results indicated that H3PO4, ZnCl2, and

SnCl2 played a role of activation in the heat treatment

process, and the effect of H3PO4 in the porosity

development was excellent. Simultaneously, Table 1

shows the specific surface area of AC roughly

inversely proportional to the carbon yield. That is, the

specific surface area increased as the yield decreased,

because the porosity developing process can be con-

sidered as an etching process in a certain range; the

specific surface area and pore volume increased with

increasing degree of etching. Afterward, it would

consume more carbon, thus resulting in the

decreased carbon yield.

The N2 adsorption/desorption isotherms are

exhibited in Fig. 2. According to the International

Union of Pure and Applied Chemistry classification,

the adsorption isotherm for HT-1000, P-HT-1000, Zn-

HT-1000, Ca-HT-1000, and HT-Ca-1000 can be

assigned to type I with obvious adsorption at a low

relative pressure. The N2 isotherms for Sn-HT-1000

belonged to the type IV, hysteresis loop was

appeared, indicating the existence of mesoporous

structures. While the N2 isotherms for HT-P-1000,

HT-Zn-1000, and HT-Sn-1000 were between type I

and type II, they feature a mixture of high N2 uptake

at P/P0\ 0.05 with continually increasing adsorption

at higher P/P0 (0.05–0.4) for developed mesopores;

the mesopore may be produced by the restructuring

of the carbon backbone during the high-temperature

heat treatment process [36].

Influence of additives on morphology

Figure 3 shows SEM images of sucrose and as-

prepared carbon materials. Sucrose transformed

into carbon microspheres with a diameter of

approximately 1–2 lm after hydrothermal car-

bonization, and after subsequent heat treatment,

the diameter of HT-1000 was nearly the same as

before. When additives were added in the

hydrothermal process, P-HT-1000 formed the AC
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Figure 2 N2 adsorption/desorption isotherms of a HT-1000 and activated carbons of added additives in the hydrothermal process and

b HT-1000 and activated carbons of added additives in the heat treatment process.
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microspheres with particle size ranging from 2 to

7 lm, and the particle size of Zn-HT-1000 was from

2 to 8 lm, while for Sn-HT-1000 and Ca-HT-1000,

some were spherical structures, and some of which

were coral structure. When additives were added

in the heat treatment process, HT-P-1000, HT-Zn-

1000, HT-Sn-1000, and HT-Ca-1000 all formed AC

microspheres with uniform particle diameter of

1–1.5 lm, and the microspheres were basically

similar to HT-1000.

Accordingly, the particle size of AC microspheres

prepared by adding additives in the hydrothermal

process was larger than that in the heat treatment

process, which suggested that the kinetics of nucle-

ation and growth in the particle formation process

had changed when additives were added in the

hydrothermal process. This result may be because the

addition of additives in the hydrothermal process

decreased the pH that can improve the formation of

polymer, and the extension of the polymeric phase

Figure 3 SEM images of a sucrose, b HT, c HT-1000, d P-HT-1000, e Zn-HT-1000, f Sn-HT-1000, g Ca-HT-1000, h HT-P-1000, i HT-

Zn-1000, j HT-Sn-1000, k HT-Ca-1000.
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and the progress of internal condensation are faster

than the formation of spherical particles [3, 5].

However, according to the nucleation–growth

mechanism following LaMer model, the strong acid

prohibited some species with reactive oxygen func-

tionalities (hydroxyl, carbonyl, carboxylic, etc.) from

diffusing and linking to the nuclei and stopped the

growth of carbon microsphere [22]. Lastly, it resulted

in a distribution of shapes. Therefore, adding addi-

tives in the hydrothermal process was unfavorable to

the formation of carbon spheres, which resulted in

some carbon nuclei that could not grow into carbon

spheres, while the addition of additives in the heat

treatment process formed carbon microspheres with

relatively homogeneous particle size and basically

integrated shape.

TEM images of HT-1000 and HT-P-1000 samples as

exampled in Fig. 4 also indicated that there were

plenty of pore structures throughout the produced

AC materials, and that HT-P-1000 had more pore

structure than HT-1000, which was consistent with

the results from BET.

XRD analysis

Figure 5 shows the XRD patterns of sucrose, HT, HT-

1000, Ca-HT-1000, and HT-P-1000. As shown in the

Figure 4 TEM images of a,

b HT-1000, c, d HT-P-1000.

10 20 30 40 50 60 70 80

HT-1000

HT-P-1000

Ca-HT-1000

HT

Sucrose

2  (degree)
In

te
ns

ity
(a

.u
.)

Figure 5 XRD patterns of sucrose, HT, HT-1000, Ca-HT-1000,

and HT-P-1000.
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figure, the original crystal phase structure of sucrose

was destroyed after hydrothermal treatment. All the

carbon materials generated a broad diffraction peak

around 24� and a weak diffraction peak around 44� in
XRD patterns, which could be attributed to the (002)

and (100) reflection of the graphitic-type lattice,

indicating the formation of amorphous structures

[36].

FTIR characterizations

The FTIR spectra of carbon spheres and sucrose

starting material are shown in Fig. 6. For the HT

sample, the broad band observed at 3000–3700 and

2900 cm-1 belongs to O–H (hydroxyl or carboxyl

groups) and aliphatic C–H stretching vibration,

respectively [27]. The bands at 1710 and 1620 cm-1

(together with the band at 1513 cm-1) can be attrib-

uted to C=O (carbonyl, quinone, ester, or carboxyl)

and C=C vibrations, respectively, whereas the bands

in the 1000- to 1450-cm-1 region correspond to the C–

O (hydroxyl, ester, and ether) stretching vibration

and O–H bending vibration [7, 27]. The bands at

750–875 cm-1 are assigned to the out-of-plane bend-

ing vibration of the aromatic C–H [27]. All of these

results suggest that after hydrothermal treatment of

sucrose, surface functional groups of hydrochar

become more abundant. A comparative analysis of

the FTIR spectra of hydrochar and sucrose suggests

that dehydration and aromatization processes occur

during the hydrothermal carbonization. The intensi-

ties of the bands corresponding to the hydroxyl or

carboxyl groups (3400 and 1000–1450 cm-1) in the

hydrochar are weaker than those of the correspond-

ing sucrose, thereby suggesting that dehydration

occurred [10]. The appearance of the bands at 1620

and 1513 cm-1 reveals the aromatization of the

samples [10].

When the hydrochar was heated at 1000 �C for 2 h,

the number of vibration peaks reduced markedly and

intensity significantly weakened, indicating a sub-

stantial reduction in the surface functional groups of

AC. Only weak stretching vibration of O–H and C=C

appeared at 3400 and 1620 cm-1, respectively, weak

C–O stretching vibration and O–H bending vibration

in the 1000–1450 cm-1 region; these results are con-

sistent with the results of Hao et al. [34]. The peak at

approximately 2350 cm-1 is identified with asym-

metric stretching vibration of atmospheric carbon

dioxide [37]. The FTIR spectra indicated that the heat

treatment would lead to further dehydration and

release of surface functional groups (e.g., OH group)

and structural rearrangement and leave the sp2-bon-

ded carbon backbone finally [36]. Furthermore, the

O–H band intensity of AC microspheres prepared by

adding additives in the hydrothermal process was

weaker than that in the heat treatment process; this

may be caused by the acidity of the solution that

prohibited some species with reactive oxygen func-

tionalities (hydroxyl, carbonyl, carboxylic, etc.) from

diffusing and linking to the nuclei [22] and can be

removed in the form of small organic molecules

during the heat treatment.
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Figure 6 FTIR spectra of a activated carbon microspheres

obtained by hydrothermal carbonization and further heat treatment

of sucrose and b sucrose and HT.
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Figure 7 Photographs of a

water droplet on a tablet of

a HT, b HT-1000, c P-HT-

1000, d Zn-HT-1000, e Sn-

HT-1000, f Ca-HT-1000,

g HT-P-1000, h HT-Zn-1000,

i HT-Sn-1000, and j HT-Ca-

1000.
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WCA test

To identify the surface hydrophobic properties of the

samples, the WCAs of the carbon materials were

measured (Fig. 7). When a water droplet was allowed

to contact with the surface of samples, the contact

angle measured was all above 100�, suggesting that

the carbon materials prepared by this method all

performed good hydrophobicity. Moreover, from the

results of contact angle measurements, P-HT-1000,

Zn-HT-1000, Sn-HT-1000, and Ca-HT-1000 have a

stronger hydrophobic nature than HT-P-1000, HT-

Zn-1000, HT-Sn-1000, and HT-Ca-1000. This result is

due to the amount of surface oxygen containing

functional groups (e.g., OH group) of the latter that is

more than the former, which was consistent with the

observation from FTIR.

Dynamic adsorption

Figure 8 shows the toluene dynamic adsorption

breakthrough curves of the AC samples. The curves

can be divided into three stages. During the first

stage, the toluene was almost completely adsorbed,

and its outlet concentration was nearly zero. In the

second stage, the toluene concentration gradually

reached the breakthrough point (the outlet concen-

tration was 5% of the inlet concentration), and the

outlet concentration of toluene increased significantly

with the increase in adsorption time. In the third

stage, the outlet concentration increased in an

S-shaped curve to the inlet concentration [38, 39]. As

shown in the diagram, among all the samples, HT-P-

1000 and Sn-HT-1000 exhibited the longest (i.e.,

reached 132 min) and the shortest (i.e., only 48 min)

breakthrough times, respectively. Besides, the

breakthrough time of HT-Zn-1000 was short but

required a longer time to reach adsorption equilib-

rium. The need for an extended breakthrough time

may be attributed to the existence of super-microp-

ores in which the diameter was close to the toluene

molecules, thereby increasing the diffusion resistance

of toluene molecules from the outer to the inner

micropores.

As shown in Table 2, the saturated adsorption

capacity of HT-1000 for toluene was 280.2 mg g-1.

When additives were added in the hydrothermal

process, the saturated adsorption capacity of Ca-HT-

1000 reached 460.6 mg g-1, and when additives were

added in the process of heat treatment, the saturated

adsorption capacity of HT-P-1000 reached up to

548.3 mg g-1, which was nearly two times greater

than that of HT-1000. The adsorption capacity of all

carbon materials at per square meter surface area was

nearly equal, which suggested that the adsorption

capacity of toluene was directly proportional to the

specific surface area. That is, when specific surface

area increased, the adsorption capacity of toluene

increased correspondingly. Therefore, the presence of

additives was necessary, and the addition of CaCl2 in

the hydrothermal process or the addition of H3PO4 in

the heat treatment process could effectively improve

the adsorption capacity of toluene on carbon spheres.

Mechanism of sucrose into carbon

Sucrose undergoes hydrolysis and formed glucose

and fructose in the hydrothermal process; then, glu-

cose, fructose, and other products of decomposition

present in the solution undergo intermolecular

dehydration and aldol condensation, which lead to

polymerization. These polymers undergo aromatiza-

tion, resulting in the formation of aromatic com-

pounds; then, the formation of aromatic clusters

occurs through intermolecular dehydration of aro-

matic compounds. These aromatic clusters will

gather together to form a core when super-saturation

state is reached in the aqueous solution; these nuclei

develop based on nucleation model described by

LaMer, then hydrochar spheres emerged [1]. After

heat treatment in N2 atmosphere, small organic
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Figure 8 Experimental breakthrough curves of toluene on nine

samples (GHSV: 20,000 mL h-1 g-1, inlet toluene concentration

8200 mg g-1).
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molecules are removed; porosity is generated within

the hydrochar spheres, thereby forming the final AC

microspheres. In this process, the hydrochar is actu-

ally a type of super-polymer with certain carbon

skeleton, which is critical for the formation of

porosity.

When additives were added in the hydrothermal

process, CaCl2 could promote carbon nuclei to form

hydrochar with better carbon skeleton, but it also

influenced the growth of carbon nucleus. Thus, it was

unfavorable to the formation of carbon spheres,

resulting in growing up of some carbon nuclei, while

others could not. When additives were added in the

heat treatment process, H3PO4 and ZnCl2 had no

influence on the formation of hydrochar spheres.

Nevertheless, H3PO4 and ZnCl2 as activation agents

promoted the development of porosity. Conse-

quently, AC microspheres with relatively uniform

particle size and well-developed porosity were

formed.

Conclusions

Sucrose was used as the carbon source, and

hydrothermal method and further heat treatment

were adopted to synthesize carbon microspheres. AC

microspheres with high specific surface area and

well-developed porosity were prepared by adding

additives. From our findings, additives play signifi-

cant roles in the synthesis process. When additives

were added in the process of HTC in which CaCl2
additive could play an effective role in promoting the

formation of hydrochar with better carbon skeleton,

the specific surface area of Ca-HT-1000 reached up to

1180 m2 g-1 and adsorption capacity of toluene was

460.6 mg g-1. While adding additives in the process

of heat treatment, H3PO4 additive played a major role

of activation in thermal processing, the specific sur-

face area of HT-P-1000 was as high as 1529 m2 g-1,

and adsorption capacity of toluene was up to

548.3 mg g-1. On the contrary, adding additives in

the hydrothermal process was unfavorable to the

formation of carbon spheres, while the addition of

additives in the thermal treatment process could

form carbon microspheres with homogeneous parti-

cle size. These findings may help other researchers to

understand the influence of additives on the prepa-

ration of hydrochar-derived AC.
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