文章编号:1006-2467(2021)09-1071-09

DOI: 10.16183/j. cnki. jsjtu. 2020.065

R115/NaX 的吸附动力学及其因素显著性分析

张金柯^{1,2}, 缪光武², 金佳敏², 陈银飞¹

卢晗锋¹, 宁文生¹, 白占旗², 刘武灿²

(1. 浙江工业大学 化学工程学院,杭州 310014;

2. 浙江省化工研究院 含氟温室气体替代及控制处理国家重点实验室,杭州 310023)

摘 要:为了认识五氟一氯乙烷(R115)在 NaX 上的吸附动力学机理,以指导 R115 吸附脱除和催 化转化等工业应用,分别利用准一级、准二级和内扩散模型研究 R115 浓度(指体积分数)和吸附剂 粒径对 R115 吸附的影响.对比 Thomas 和 Yan 模型对穿透曲线的适用性,采用二水平三因子实验 方法分析 R115 浓度、吸附剂质量和体积流速对吸附性能影响的显著性和相关性.研究结果显示, 吸附过程主要受膜扩散控制;Yan 和准一级吸附动力学模型对实验数据拟合度较高;吸附剂质量是 最关键因素,显著影响穿透时间、饱和时间、吸附剂处理量和床层利用率;吸附剂质量和体积流速的 交互作用对吸附剂处理量影响显著.

关键词:五氟一氯乙烷;吸附;动力学;穿透曲线;实验设计
 中图分类号:O 647.3;TQ 028.2
 文献标志码:A

Analysis of Factors and Significances of Adsorption Kinetics R115/NaX System

ZHANG Jinke^{1,2}, MIAO Guangwu², JIN Jiamin², CHEN Yinfei¹ LU Hanfeng¹, NING Wensheng¹, BAI Zhanqi², LIU Wucan²

(1. College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China;

2. State Key Laboratory of Fluorinated Greenhouse Gases Replacement and Control Treatment,

Zhejiang Research Institute of Chemical Industry, Hangzhou 310023, China)

Abstract: To understand the adsorption kinetic mechanism of chloropentafluoroethane (R115) on NaX and then to guide the industrial applications of R115 adsorption removal and catalytic conversion, the effect of R115 concentration (referring to volume fraction) and adsorbent particle size on adsorption performance are studied by using pseudo-first-order, pseudo-second-order, and intraparticle diffusion models. The applicability of the Thomas model and Yan model for breakthrough curve analysis are compared. A two-level three-factor experimental method is implemented to evaluate the significance and possible correlations of R115 concentration, adsorbent mass, and flow rate on adsorption performance. The results indicate that the adsorption process is mainly controlled by R115 external film diffusion. The Yan model and the pseudo-first-order adsorption kinetic model fit the experimental data better. The adsorbent mass is the most important factor significantly affecting the breakthrough time, saturation time, volume of effluent

收稿日期:2020-03-13

作者简介:张金柯(1983-),男,浙江省诸暨市人,高级工程师,主要从事氟化工分离纯化、含氟电子气体、高纯氟烃制备、化工过程模拟、吸附及精馏技术的开发及应用等研究.

通信作者:陈银飞,男,教授,博士生导师,电话(Tel.):0571-85864008;E-mail:yfchen@zjut.edu.cn.

treated per gram of adsorbate, and fractional bed utilization. The interaction of adsorbent mass and flow rate has a significant effect on the volume of effluent treated per gram of adsorbate.

Key words: chloropentafluoroethane; adsorption; kinetics; breakthrough curves; experimental design

氯氟烃(CFCs)被广泛用于制冷剂、发泡剂、推进剂和清洗剂,但因温室效应和臭氧破坏效应显著 而备受关注^[1],已被《蒙特利尔议定书》列为受限制 产品.回收和二次利用氯氟烃日显重要,主要方法是 用活性炭、沸石等材料吸附或催化转化^[2-4].吸附法 操作简单、能耗低、环境友好、吸附剂可循环使用^[5], 而且适合于低浓度(本文的浓度均指体积分数)处 理^[6].吸附法有3种作用机理:位阻效应、动力学效 应和平衡效应^[7].

五氟一氯乙烷(C_2F_5Cl ,R115)属于 CFCs 类物 质,R115吸附以热力学平衡研究为主.Peng 等^[8]研 究发现 R115在 MFI 型全硅分子筛上有孔道和交叉 点两种不同吸附位,吸附热分别为 52.2、44.6 kJ/ mol,在活性炭(AC)上的最大吸附热为 40 kJ/mol 左右,这与 Park 等^[9]和 Moon 等^[6]的研究结果一 致.Peng 等^[8]发现 R115在 AC 上的吸附热随覆盖 度的增加而下降,而 Moon 等^[3]研究 R115的吸附 热力学时发现,其在 AC 和 Pd/AC 上的吸附热随覆 盖度的增加而上升,认为是由于吸附相分子之间发 生了相互作用导致的.文献[10-12]的研究发现 NaX 是 R115的优异吸附剂.张金柯等^[10]通过热力学研 究发现作用力差异是 NaX 分离 R115和 R116的重 要原因,但目前未见 R115的吸附动力学研究报道.

本研究进行了 R115 在 NaX 固定床上的连续 吸附实验,对实验数据分别利用准一级、准二级和内 扩散等模型开展吸附动力学研究,采用因子实验设 计方法分析了 R115 浓度、吸附剂质量和体积进料 量对吸附穿透时间、饱和时间、饱和吸附处理量和吸 附床层利用率的影响,用方差分析(ANOVA)和数 据回归方法分析变量及交互作用对吸附的显著性和 相关性影响.本文工作结果可为 R115 回收、催化转 化以及吸附分离等工业应用提供一定的指导作用.

1 实验

1.1 实验材料

R115采购于浙江蓝天环保高科技股份有限公司,纯度高于 99.99%,根据不同实验,与纯度高于 99.999%的 He 配成相应浓度;NaX 分子筛购于杭州希吉斯新材料科技有限公司,其比表面积为

685.8 m²/g,孔容为 0.34 cm³/g.

1.2 吸附剂评价方法

采用内径为 11 mm 的固定床进行动态吸附穿 透曲线实验,流程如图 1 所示.其中:P 为压力表;T 为温度计.吸附动力学研究时,使用的吸附剂粒径分 別为 0.39、0.55、0.78、1.1 mm,装填高度范围为 45~50 mm;因子实验时,吸附剂粒径为 0.55 mm, 床层高度为 47 mm.吸附实验前,吸附剂在 623 K、 25 mL/min 的 He 下在线活化 5 h,随后降温,于 303 K、100 kPa 条件下进行吸附实验.吸附尾气用氦离 子气相色谱仪在线分析,浓度检测限为 $\varphi=10\times10^{-9}$.

1.3 二水平三因子实验设计

吸附质含量、吸附剂质量以及流速对吸附结果的影响较大,因子实验设计可以集中优化所有参数, 不仅可以考察单个因子对应变量的影响,还能对比 因子的交互作用,可以大大减少总实验次数.采用二 水平三因子实验(2^3),讨论了 R115 浓度($\varphi_0 = 400 \times 10^{-6}$,600×10⁻⁶)、吸附剂质量(m = 2,8 g)和体积 进料量(Q = 15,35 mL/min)对吸附穿透时间 t_b 、饱 和时间 t_s 、饱和吸附处理量 V_s 和吸附床层利用率 ζ 的影响.因子代码及水平设计如表 1 所示,其中:X、

表 1 二水平三因子实验设计表

Tab. 1 Experimental design of	two-level three-factor method
-------------------------------	-------------------------------

亦导	伴旦	2 水平		
文里	10.5	-1	0	1
$arphi_0 imes 10^6$	X	400	500	600
m/g	Y	2	5	8
$Q/(mL \cdot min^{-1})$	Ζ	15	25	35

Y和Z分别为 φ_0 、m和Q的代号; -1和1分别为 该因子的低值和高值; 0为中心点.

2 实验结果与讨论

2.1 吸附动力学

2.1.1 内扩散模型 内扩散模型被广泛用于预测 吸附的速控步骤,其数学表达式为^[13-15]

$$q_t = k_{\rm id} t^{1/2} + I \tag{1}$$

式中: q_t 为t 时刻的吸附量;k_{id} 为内扩散模型速率常数;I 为边界层厚度的一个常数^[13]. q_t 对t^{1/2} 作图,若 为多条线性关系,则说明吸附过程受多个影响因素 影响^[16-17].

不同吸附剂粒径和 R115 浓度的内扩散动力学 模型研究结果如图 2 和表 2 所示.其中: d_p 为吸附 剂粒径; R^2 为决定系数.由图 2 可知,内扩散模型 为两段线性关系,意味着吸附过程除内扩散外还有 其他影响因素^[17].第一部分线性为在外表面即时吸 附,受外层扩散作用影响,第二部分线性说明受内扩 散影响^[15],截距 I 表示边界层厚度.由表 2 可见,I 随 d_p 的变化不大,但随 φ_0 的变化十分显著, φ_0 从 200× 10⁻⁶提高到 600×10⁻⁶ 时,I 从 8.4 mg/g 上升到 25.6 mg/g 左右,边界层逐渐变厚,说明外层膜扩散 影响随 φ_0 的增加而增强,与文献报道一致^[17].

	表 2 不同 $d_{ ext{p}}$ 及 $arphi_{ ext{o}}$ 下的内扩散模型参数拟合	
Tab. 2	Parameter fitting of intraparticle diffusion models at different d_p and φ_0 val	ues

			-	•	1	
$d_{ m p}/{ m mm}$	× 106	第一部分线性	第二部分线性			
	$\varphi_0 \wedge 10^{\circ}$	$k_{\rm id}/({ m mg}\cdot{ m g}^{-1}\cdot{ m h}^{-1/2})$	R^2	$k_{\rm id}/({ m mg}\cdot{ m g}^{-1}\cdot{ m h}^{-1/2})$	$I/(\mathrm{mg} \cdot \mathrm{g}^{-1})$	R^2
0.39	200	4.21	0.998	1.05	7.36	0.882
0.55	200	4.45	0.998	1.09	8.87	0.900
0.55	600	13.47	0.996	3.19	24.28	0.938
0.78	200	4.71	0.997	1.30	8.50	0.920
0.78	600	13.37	0.993	2.49	26.93	0.938
1.10	200	4.71	0.998	1.38	9.00	0.917

图 2 不同 d₀ 和 φ₀ 下的内扩散模型拟合图

为了进一步确定吸附过程的实际速控步骤,本研究进行了 Boyd 模型分析^[18-19]:

$$Bt = \left(\sqrt{\pi} - \sqrt{\pi - \left(\frac{\pi^2 F_t}{3}\right)}\right)^2$$
(2)
$$F_t = \frac{q_t}{q_e} < 0.85$$

式中: F_t 为 t 时刻吸附量与平衡吸附量的比值 (q_t/q_e); B 为时间常数. Bt 对t 作图,可提供区分内 外扩散传质控制的有用信息. 若图形不过原点,意味 着吸附主要受限于膜扩散^[15,17]; 若图形过原点,意 味着内扩散为速控步骤^[15]. Boyd 模型的线性拟合 结果如图 3 所示. 由图 3 可知, Bt 对t 的直线未过 坐标原点,可见 R115 在 NaX 上的吸附受限于外层 膜扩散.

2.1.2 准一级和准二级动力学模型 准一级和准 二级动力学模型的吸附速率表达式分别如下所 示^[13-15]:

$$\ln(q_{\rm e} - q_t) = \ln q_{\rm e} - k_1 t \tag{3}$$

■ d_p =0.39 mm, φ_0 =200×10⁻⁶ ▼ d_p =1.10 mm, φ_0 =200×10⁻⁶ ▲ d_p =0.55 mm, φ_0 =200×10⁻⁶ △ d_p =0.55 mm, φ_0 =600×10⁻⁶ ● d_p =0.78 mm, φ_0 =200×10⁻⁶ ○ d_p =0.78 mm, φ_0 =600×10⁻⁶

图 3 Boyd 模型数据的线性拟合 Fig. 3 Linear fitting of data of Boyd model

Tab. 3

$$\frac{t}{q_{t}} = \frac{1}{k_{2}q_{\rm e}^{2}} + \frac{1}{q_{\rm e}}t \tag{4}$$

式中: k_1 和 k_2 分别为准一级和准二级吸附速率常数. 如果吸附符合准一级吸附方程,用 $\ln(q_e - q_i)$ 对 t 作图,将得到一条直线,斜率为 k_1 ,截距为 $\ln q_e$;如 果吸附符合准二级吸附方程,用 t/q_i 对 t 作图,也可 得到一条直线. 当 $t \to 0$ 时,准二级吸附初始速率 $dq/dt = h = q_e^2 k_2^{[14]}$.

准一级和准二级吸附动力学线性拟合结果如图 4 和 5 所示,动力学参数和 R^2 如表 3 所示.对比图 4 和 5 的线性程度及表 3 中的 R^2 数据可见,准一级方 程对实验结果的拟合度较高. k_1 随 d_p 的增加保持稳 定,而 k_2 则随之下降,与文献[20] 的报道一致. 初始 吸附速率 h 随 d_p 的变化不明显,但随 φ_0 的变化显 著. 当 φ_0 为 200×10⁻⁶和 600×10⁻⁶时, h 分 别 为

表 3	R115 在 NaX 上吸附的	隹一级和准二级动力单	学参数
Pseudo-fin	st and second order kinet	ic parameters of R115	adsorption on NaX

1 /	× 106	准一级模型			准二级模型	
$a_{\rm p}/{ m mm}$	$\varphi_0 \wedge 10^{\circ}$ -	k_1/h^{-1}	R^2	$k_2 \times 10^3 / (g \cdot mg^{-1} \cdot h^{-1})$	R^2	$h/(\mathrm{mg} \cdot \mathrm{g}^{-1} \cdot \mathrm{h}^{-1})$
0.39	200	0.157	0.957	2.954	0.927	1.46
0.55	200	0.144	0.981	1.893	0.939	1.47
0.55	600	0.215	0.957	2.873	0.882	4.15
0.78	200	0.151	0.981	2.288	0.935	1.47
0.78	600	0.179	0.894	3.166	0.918	4.52
1.10	200	0.131	0.984	2.020	0.951	1.51

- Fig. 4 Pseudo-first order plots at different $d_{\rm p}$ and φ_0 values
- 1.5 mg/(g•h)和4.5 mg/(g•h)左右.

2.2 穿透曲线模型

采用 Thomas 和 Yan 模型分析吸附穿透曲线, 公式如下^[21]:

$$\frac{\varphi_t}{\varphi_0} = \left[1 + \exp\left(\frac{k_{\mathrm{TH}}}{Q}q_{\mathrm{TH}}(m - \varphi_0)tQ\right)\right]^{-1} \quad (5)$$

图 5 不同 d_p 和 q₀ 下的准二级动力学图

Fig. 5 Pseudo-second order plots at different $d_{\rm p}$ and φ_0 values

$$\frac{\varphi_t}{\varphi_0} = 1 - \left[1 + \left(\frac{\varphi_0 Q t}{q_Y m}\right)^{a_Y}\right]^{-1} \tag{6}$$

式中: φ_t 为 t 时刻出口的 R115 浓度; k_{TH} 和 q_{TH} 分别 为 Thomas 模型的速率常数和吸附量; a_Y 和 q_Y 分 别为 Yan 模型常数和吸附量. 二者的模型拟合如图 6 和 7 所示, 两者的模型参数如表 4 所示.

第55卷

	表 4	R115	在 NaX _	上败附的	Thoma	s 模型和	Yan †	莫型参数	
Гаb. 4	Parame	eters of	Thomas	model an	d Yan i	model of	R115	adsorption	on NaX

×10 ⁶	d /mm	-1	Thoma	Yan 模型				
$\varphi_0 \wedge 10^{\circ}$	$a_{\rm p}/{ m mm}$	$q_{\rm e}/({\rm mg} \cdot {\rm g}^{-1})$	$k_{\mathrm{TH}}/(\mathrm{mL}\cdot\mathrm{min}^{-1}\cdot\mathrm{mg}^{-1})$	$q_{\mathrm{TH}}/(\mathrm{mg} \cdot \mathrm{g}^{-1})$	R^2	$q_{ m Y}/(m mg ullet g^{-1})$	ay	R^2
200	0.39	12.159	4.52	14.02	0.993	13.29	3.57	0.995
	0.55	14.358	3.69	16.46	0.992	15.56	3.41	0.995
	0.78	15.725	3.33	17.96	0.993	16.96	3.38	0.995
	1.10	16.624	2.96	18.87	0.990	17.65	3.15	0.995
600	0.55	38.038	1.79	44.50	0.997	43.07	4.47	0.995
	0.78	37.821	1.79	44.26	0.996	42.82	4.47	0.994

Thomas 模型是包含动力学常数 k_{TH} 的二参数 模型,可以预测吸附剂的穿透曲线和最大吸附容量. 由图 6 可见,Thomas 模型在吸附前期略有偏差,但 中后期拟合度较高.由表 4 可知,当 φ_0 为 200×10⁻⁶ 时,Thomas 模型的速率常数 k_{TH} 随 d_p 的增加而下 降,但当 φ_0 增加到 600×10⁻⁶ 时, k_{TH} 不再变化;相 同 d_p 时, k_{TH} 也随 φ_0 的增加而下降,与文献[22]的 报道一致.

为了最小化 Thomas 模型在使用中产生的误差,Yan 提出了 Yan 模型^[21].由图 7 可见,Yan 模型 在吸附前中期对实验结果拟合度都较高,但在后期 出现偏差.由表 4 可见,Yan 模型的速率常数 a_Y 随 d_p 的变化规律与 k_{TH} 一致,但随 φ_0 的变化规律相 反, a_Y 随 φ_0 的增加而上升.Yan 模型预测的吸附饱 和量更接近实验值, R^2 也更接近于 1,因此 Yan 模 型更适合 R115/NaX 吸附体系.

2.3 因子显著性分析

因子实验设计中,将吸附尾气中 R115 的含量 达到入口1%的时间、浓度和吸附量分别定义为穿 透时间、穿透浓度 φ_b 和穿透吸附量 q_b ;将达到人口 99%的时间、浓度和吸附容量定义为饱和时间、饱和 浓度 φ_s 和饱和吸附容量 q_s ,公式如下所示:

$$\varphi_{\rm b} = 0.01\varphi_0 \tag{7}$$

$$\varphi_{\rm s}=0.99\varphi_0\tag{8}$$

$$V_{\rm s} = t_{\rm s} \, \frac{Q}{m} \tag{9}$$

$$q_{\rm b} = \frac{\varphi_0 \mathbf{Q}}{1\,000m} \int_0^{t_{\rm b}} \left(1 - \frac{\varphi_{\rm b}}{\varphi_0}\right) \mathrm{d}t \tag{10}$$

$$q_{s} = \frac{\varphi_{0} Q}{1\ 000m} \int_{0}^{t_{s}} \left(1 - \frac{\varphi_{s}}{\varphi_{0}}\right) \mathrm{d}t \tag{11}$$

$$\zeta = \frac{q_{\rm b}}{q_{\rm s}} \tag{12}$$

二水平三因子矩阵设计的实验结果和预测值如 表 5 所示.由表 5 可知,实验值与预测值几乎相等, $R^2 = 0.9978 \sim 0.9999$,回归模拟置信度高,可用于 进一步数据分析.

各因子及交互作用的回归系数和方差分析如表 6 所示.因子的平方和(SS)越大说明该因子在过程 中越重要.因子及交互作用对响应值影响的显著程

表 5 二水平三因子矩阵设计实验结果与预测值

Tab. 5 Experimental and predicted results matrix of two-level three-factor design

- × 106		$O/(mI + min^{-1})$	$t_{ m b}/ m h$		t_{s}	$t_{ m s}/{ m h}$		$V_{\rm s}/({\rm L} \cdot {\rm g}^{-1})$		ζ	
$\varphi_0 \wedge 10$	<i>m</i> ∕g	$Q/(\mathrm{IIIL} \cdot \mathrm{IIIII}^{-}) =$	实验值	预测值	实验值	预测值	实验值	预测值	实验值	预测值	
600	2	15	6.37	7.42	125.78	124.71	56.60	56.82	0.115 40	0.11370	
400	2	15	5.22	4.18	124.68	125.75	56.11	55.89	0.09786	0.09957	
600	8	15	60.42	59.38	217.33	218.40	24.45	24.23	0.36670	0.36830	
400	8	15	51.18	52.23	242.13	241.06	27.24	27.47	0.32090	0.31920	
600	2	35	4.00	2.96	27.33	28.40	28.70	28.48	0.22100	0.22270	
400	2	35	2.85	3.90	26.67	25.60	28.00	28.23	0.21570	0.21390	
600	8	35	38.88	39.93	99.33	98.26	26.07	26.30	0.50860	0.50690	
400	8	35	38.00	37.00	116.00	117.07	30.45	30.23	0.46140	0.46310	
500	5	25	25.60	26.07	122.00	122.20	34.97	34.85	0.28716	0.248 90	
500	5	25	25.71	25.81	122.19	122.24	34.65	34.74	0.28794	0.254 30	
500	5	25	26.30	25.76	122.54	122.80	34.51	34.54	0.29022	0.254 30	
	平均值		25.87	25.88	122.41	122.41	34.70	34.71	0.28844	0.25250	
	R^2		0.9	97 8	0.9	99 8	0.9	997	0.9	9999	

表 6 因子回归系数及其对响应因子的影响

 Tab. 6
 Regression coefficients of factors and their effects on response factors

响应	因子	系数	平方和	<i>P</i> 值
因子				
$t_{\rm b}$	$arphi_0$	0.025	19.28	0.377
	m	8.578	3614.20	0.031
	Q	0.653	194.64	0.132
	$\varphi_0 imes m$	3.258×10^{-3}	7.64	0.521
	$arphi_0 imes oldsymbol{Q}$	-1.045×10^{-3}	8.74	0.500
	$m \times Q$	-0.125	112.35	0.173
t_{s}	$arphi^{_0}$	0.016	197.11	0.135
	m	29.402	17143.04	0.014
	Q	-4.995	24264.94	0.012
	$\varphi_0 imes m$	-0.018	233.60	0.124
	$arphi_0 { imes} Q$	9.612 $\times 10^{-4}$	7.39	0.534
	$m \times Q$	-0.199	284.05	0.113
${V}_{ m s}$	$arphi_0$	0.014	4.47	0.186
	m	-7.146	468.18	0.018
	Q	-1.821	327.42	0.022
	$arphi_0 imes m$	-3.483×10^{-3}	8.74	0.135
	$arphi_0 imes oldsymbol{Q}$	-1.725×10^{-4}	0.24	0.583
	m imes Q	0.254	462.69	0.018
ζ	$arphi_0$	3.230×10^{-5}	1.677×10^{-3}	0.074
	m	0.021	0.13	0.008
	Q	5.756×10 ⁻³	0.032	0.017
	$arphi_0 imes m$	2.915×10 ⁻⁵	6.118×10^{-4}	0.122
	$arphi_0 imes oldsymbol{Q}$	-1.330×10^{-6}	1.415×10^{-5}	0.578
	$m \times Q$	2.465×10 ⁻⁴	4.375×10^{-4}	0.144

度也可用 P 值定义^[23]: P > 0.1 为不显著, 0.05 < $P \le 0.1$ 为略显著, 0.01 < $P \le 0.05$ 为显著, 0.001 < $P \le 0.01$ 为非常显著, $P \le 0.001$ 为极其显 著.由表 6 可知, m 对 t_b 的 SS 为 3 614.2, 值最大, P值为 0.031, 小于 0.05, 说明 m 对 t_b 影响显著; m 和 Q 对 t_s 、 V_s 、 ζ 的 P 值都小于 0.05, 具有显著影响, 尤 其 m 对 ζ 的 P 值为 0.008, 说明 m 对 ζ 的影响非常显 著. 交互作用中, $Q m \times Q$ 的交互作用对 V_s 的 P 值 小于 0.05, 影响显著, 其他交互作用均不显著.

单因子对 t_b 的影响分析如图 8 所示. 由图 8 可 以知道,m 对 t_b 的直线斜率最大,对应表 6 中 m 对 t_b 的 P 值最小,可见 m 对 t_b 作用最显著. 当 m 增加时, 则吸附 位点和停留时间增加,因此对 t_b 为正相 关^[19,24];增加 Q 虽然可减小外扩散影响,但停留时 间有所减少^[25],因而表观上与 t_b 为负相关. 根据各 因子及交互作用的回归系数, t_b 的定量关系式可由 下式表达:

$t_{\rm b}$	$= -25.523 + 0.025\varphi_0 + 8.578m$	a + 0.653Q +
	3. 258 \times 10 ⁻³ $\varphi_0 m - 1.045 \times 10^{-3}$	$)^{-3} arphi_0 old Q - $
	0.125 <i>mQ</i>	(13)

因子及交互作用对 t_s 的 Pareto 分析图如图 9 所示,其中 λ 为标准化效应.由图 9 可知,Y 和 Z 超过 了参考线,说明对 t_s 具有显著影响,而 Y 对 t_s 为正相 关,X 和 Z 为负相关作用.增加 m 使吸附位点和吸附 质的停留时间增加,因而对 t_s 为正相关^[26];增加 φ₀ 有利于提高吸附位点的填充效率,因而对 t_s 负相 关^[26];增加 Q 使停留时间减小,分子未达到吸附平 衡即离开吸附柱^[27],因而对 t_s 为负相关.根据各因

图 8 单因子对 t_b 的影响 Fig. 8 Effect of single factor on t_b

图 9 饱和时间的 Pareto 图 Fig. 9 Pareto chart of saturation time

子及交互作用的系数回归,t。定量式可由下式表达:

$$t_{\rm s} = 149.913 + 0.016 \varphi_0 + 29.402m -$$

 $4.995Q - 0.018 \varphi_0 m +$
 $9.612 \times 10^{-4} \varphi_0 Q - 0.199mQ$

吸附剂处理量 V。直接反应单位吸附剂处理能 力.m、Q及m×Q对V。的 P 值分别为 0. 019,0. 022 和 0. 019,有显著影响,其他因子作用不显著.因子 交互作用对V。的影响如图 10 所示.由图 10(b)可 知,两条直线斜率差异显著,可见 m×Q交互作用显 著. 当 *m*=2 g 时,*V*。随 Q 的增加迅速从 56.4 L/g 下降到 28.4 L/g,Q 对 *V*。为负相关;但当 *m*=8 g 时,*V*。随 Q 的增加从 25.8 L/g 略微上升到 28.3 L/ g,Q 对 *V*。变为正相关.根据各因子及交互作用的回 归系数,*V*。的定量关系式可由下式表达:

$$egin{aligned} V_{s} &= 88.\,007 + 0.\,014 arphi_{0} - 7.\,146 m - 1.\,821 Q - \ &3.\,483 imes 10^{-3} arphi_{0} imes m - 1.\,725 imes 10^{-4} arphi_{0} imes Q + \ &0.\,254 m imes Q \end{aligned}$$

ζ是评价吸附床层利用率的常用参数^[24,28].本 研究的ζ值在 0.1~0.5. φ_0 、Q和m对ζ的P值分 别为 0.075、0.017和 0.009,对ζ的作用分别为略 显著、显著和非常显著.因子效应的半正态分布图如 图 11 所示.其中: θ 为半正态概率; η 为标准化绝对 效应.在半正态概率图上,离 0 越远的效应在统计意 义上的作用越显著.由图 11 可知,3 个单因子对ζ 均为正作用,Y和Z离 0 最远,对ζ影响最显著. φ_0 对ζ的正相关与进入吸附柱的分子越多,吸附速率 越高有关^[21,26].m对ζ的正相关由吸附质的停留时 间和扩散引起,吸附质在吸附剂上的停留时间越长, 扩散越充分,进而床层利用率越高.Q对ζ正相关是

(14)

由于增加Q可有效降低外传质膜厚度和阻力,进而 提高整体传质系数和传质通量^[21,27].对ζ进行统计 分析得到的回归模型可用下式表示:

$$\begin{split} \boldsymbol{\zeta} &= -\ 0.\ 065 + 3.\ 23 \times 10^{-5} \varphi_0 + 0.\ 021m + \\ &5.\ 756 \times 10^{-3} \boldsymbol{Q} + 2.\ 915 \times 10^{-5} \varphi_0 \times m - \\ &1.\ 33 \times 10^{-6} \varphi_0 \times \boldsymbol{Q} + 2.\ 465 \times 10^{-4} m \times \boldsymbol{Q} \end{split} \tag{16}$$

3 结论

(1) NaX 可吸附 R115 至 10×10⁻⁹以下,处理 能力高达 56.8 L/g 吸附剂,吸附深度深,处理能力 大,是优异的 R115 吸附剂.

(2) 根据内扩散模型和 Boyd 模型, R115 在 NaX 上的吸附主要受外层膜扩散影响.

(3) Yan 模型对吸附前中期拟合度较高,吸附容量预测值更接近实验结果,更适合 R115/NaX 吸附体系.

(4)利用二水平三因子实验设计对实验数据进行回归分析, R²最高为 0.9999, 预测结果与实验结果吻合, 可预测其他条件下的吸附结果.

(5) m对t_b为正相关的显著作用;m和Q对t_s作 用显著,分别为正相关和负相关;m、Q及m×Q的交 互作用对V_s作用显著,m对V_s为负相关;Q对V_s的 相关性受 m 交互作用影响:m 较低时,Q 对V_s为负 相关,随着 m 逐渐增加,负相关性逐渐转变为正相 关;φ₀、Q和m 对ζ作用分别为略显著、显著和非常 显著,对ζ均为正相关.应用过程可根据上述结论, 针对性调变参数以达到所需目的.

参考文献:

- [1] LOVELOCK J E. Atmospheric fluorine compounds as indicators of air movements[J]. Nature, 1971, 230 (5293): 379.
- [2] 张金柯,白占旗,徐娇,等.一种六氟丁二烯的纯化

方法: CN107032949A[P]. 2017-08-11[2020-07-13]. ZHANG Jinke, BAI Zhanqi, XU Jiao, *et al.* Purification method of hexafluoro-1, 3-butadiene: CN 107032949A[P]. 2017-08-11 [2020-07-13].

- [3] MOON D J, CHUNG M J, PARK K Y, et al. Adsorption equilibrium and catalytic reaction of CFC-115 on Pd/activated carbon powder[J]. Carbon, 1999, 37 (1): 123-128.
- KOBAYASHI S, MIZUNO K, KUSHIYAMA S, et al. Adsorption behavior of chlorofluorocarbons in zeolitic pores. 1. Adsorption isotherm[J]. Industrial & Engineering Chemistry Research, 1991, 30 (10): 2340-2344.
- [5] SALEH T A, SARI A, TUZEN M. Optimization of parameters with experimental design for the adsorption of mercury using polyethylenimine modified-activated carbon[J]. Journal of Environmental Chemical Engineering, 2017, 5(1): 1079–1088.
- [6] MOON D J, CHUNG M J, CHO S Y, et al. Adsorption equilibria of chloropentafluoroethane and pentafluoroethane on activated carbon pellet [J].
 Journal of Chemical & Engineering Data, 1998, 43 (5): 861-864.
- YANG R T. Adsorbents: Fundamentals and applications[M]. Hoboken, New Jersey, USA: John Wiley & Sons, 2003.
- [8] PENG Y, ZHANG F M, ZHENG X, et al. Comparison study on the adsorption of CFC-115 and HFC-125 on activated carbon and silicalite-1[J]. Industrial & Engineering Chemistry Research, 2010, 49(20): 10009-10015.
- [9] PARK H M, MOON D J. Adsorption equilibria of CFC-115 on activated charcoal[J]. Journal of Chemical & Engineering Data, 2003, 48(4): 908-910.
- [10] 张金柯,金佳敏,缪光武,等. 六氟乙烷和五氟一氯乙烷在 NaX 上的吸附平衡[J]. 高校化学工程学报, 2020, 34(2): 311-317.
 ZHANG Jinke, JIN Jiamin, MIAO Guangwu, *et al*. Adsorption equilibria of hexafluoroethane and chloropentafluoroethane on NaX[J]. Journal of Chemical Engineering of Chinese Universities, 2020, 34(2): 311-317.
- [11] 张金柯,白占旗,齐海,等.一种改性的吸附剂及其 在超高纯六氟乙烷制备中的应用:CN105327676A
 [P]. 2016-02-17[2020-07-13].
 ZHANG Jinke, BAI Zhanqi, QI Hai, et al. Modified

adsorbent and its application in preparation of ultrapure hexafluoroethane: CN105327676A [P]. 2016-02-17[2020-07-13].

- [12] HOLMER A E. Purification of hexafluoroethane: US6346138[P]. 2002-02-12[2020-07-13].
- [13] YANG X Y, AL-DURI B. Kinetic modeling of liquid-phase adsorption of reactive dyes on activated carbon [J]. Journal of Colloid and Interface Science, 2005, 287(1): 25-34.
- SRIVASTAVA V C, SWAMY M M, MALL I D, et al. Adsorptive removal of phenol by bagasse fly ash and activated carbon: Equilibrium, kinetics and thermodynamics [J]. Colloids and Surfaces A: Physico-chemical and Engineering Aspects, 2006, 272 (1/2): 89-104.
- [15] OFOMAJA A E. Kinetics and mechanism of methylene blue sorption onto palm kernel fibre[J]. Process Biochemistry, 2007, 42(1): 16-24.
- [16] HAMEED B H, RAHMAN A A. Removal of phenol from aqueous solutions by adsorption onto activated carbon prepared from biomass material[J]. Journal of Hazardous Materials, 2008, 160(2/3): 576-581.
- [17] MAIA G S, DE ANDRADE J R, DA SILVA M G C, et al. Adsorption of diclofenac sodium onto commercial organoclay: Kinetic, equilibrium and thermodynamic study[J]. Powder Technology, 2019, 345: 140-150.
- [18] BOYD G E, ADAMSON A W, MYERS L S JR. The exchange adsorption of ions from aqueous solutions by organic zeolites. II. Kinetics1[J]. Journal of the American Chemical Society, 1947, 69(11): 2836-2848.
- [19] GARCIA-MATEOS F J, RUIZ-ROSAS R, MAR-QUES M D, et al. Removal of paracetamol on biomass-derived activated carbon: Modeling the fixed bed breakthrough curves using batch adsorption experiments[J]. Chemical Engineering Journal, 2015, 279: 18-30.
- [20] ALHAMED Y A. Adsorption kinetics and performance of packed bed adsorber for phenol removal using activated carbon from dates' stones[J]. Journal of Hazardous Materials, 2009, 170(2/3): 763-770.
- [21] DE FRANCO M A E, DE CARVALHO C B,

BONETTO M M, *et al.* Diclofenac removal from water by adsorption using activated carbon in batch mode and fixed-bed column: Isotherms, thermodynamic study and breakthrough curves modeling [J]. Journal of Cleaner Production, 2018, 181: 145-154.

- [22] AKSU Z, GÖNEN F. Biosorption of phenol by immobilized activated sludge in a continuous packed bed: Prediction of breakthrough curves[J]. Process Biochemistry, 2004, 39(5): 599-613.
- [23] DOUGLAS C M. Design and Analysis of Experiments[M]. 7th ed. New York, NY, USA: John Wiley & Sons, 2008.
- [24] MONDAL S, AIKAT K, HALDER G. Ranitidine hydrochloride sorption onto superheated steam activated biochar derived from mung bean husk in fixed bed column[J]. Journal of Environmental Chemical Engineering, 2016, 4(1): 488-497.
- [25] MENG M J, FENG Y H, ZHANG M, et al. Highly efficient adsorption of salicylic acid from aqueous solution by wollastonite-based imprinted adsorbent: A fixed-bed column study [J]. Chemical Engineering Journal, 2013, 225: 331-339.
- [26] DE FRANCO M A E, DE CARVALHO C B, BONETTO M M, et al. Removal of amoxicillin from water by adsorption onto activated carbon in batch process and fixed bed column: Kinetics, isotherms, experimental design and breakthrough curves modelling[J]. Journal of Cleaner Production, 2017, 161: 947-956.
- [27] CHEN S H, YUE Q Y, GAO B Y, et al. Adsorption of hexavalent chromium from aqueous solution by modified corn stalk: A fixed-bed column study[J].
 Bioresource Technology, 2012, 113: 114-120.
- [28] ÁLVAREZ-TORRELLAS S, RODRÍGUEZ A, OVEJERO G, et al. Comparative adsorption performance of ibuprofen and tetracycline from aqueous solution by carbonaceous materials[J]. Chemical Engineering Journal, 2016, 283: 936-947.

(本文编辑:石易文)