近期第一作者或通讯作者发表的论文:(2021.1.1~)
2. In situ constructiion of ion/electron conductive components via lithiation strategy enhancing cycling capability and initial Coulombic efficiency of Si anode, Chemical Engineering Journal 504 (2025) 159049
3.In Situ Construction of LiF−Li3N-Rich Interface Contributed to Fast Ion Diffusion in All-Solid-State Lithium−Sulfur Batteries,ACS Nano 2024, 18, 8463−8474,
4.In Situ Polymerization Bi-Functional Gel Polymer Electrolyte for High Performance Quasi-Solid-State Lithium−Sulfur Batteries, Small 2024, 2402862.
5.Facile Synthesis of Laminated Si@C-Fe3O4 Composite from Exfoliation of Zintl Phase: A Promising Lithium Battery Anode with Superior Rate Capability and Cycling Stability, ACS Applied Energy Materials 2024, 7, 1313-1319.
6. Li-Ga Alloy-Contained Hybrid Solid Electrolyte Interphase Induced by In Situ Polymerization for High-Performance Lithium Metal Batteries, ACS Applied Materials Interfaces, 2024, 16. 55314-55324.
7. Carbon Nanofiber Cages and Interface Engineering Stabilizing Silicon-Based Anode for High-Performance Lithium-Ion Batteries,ACS Applied Energy Materials, 2023, 7, 403-413.
8.Supercritical-Assisted Ball-Milling Synthesis of Multicomponent Si/Fe3O4/C Composites for Outstanding Lithium-Storage Capability, Energy and Fuels, 2023,37, 8042-8050.
9. New Chemical Synthesis Strategy To Construct a Silicon/Carbon Nanotubes/Carbon-Integrated Composite with Outstanding Lithium Storage Capability,ACS Applied Materials Interfaces, 2023,15, 17986-17993.
10. Enhanced the interfacial compatibility by lithium anode of DOL-based in-situ polymerized gel polymer electrolytes with addition of silicon nanoparticles. Journal of Energy Storage, 2023, 66, 107368.
11.Fe3O4 Contribution to Core-Shell Structured Si@C Nanospheres as High-Performance Anodes for Lithium-Ion Batteries, Journal of Electronic Materials, 2023, 52, 1730-1739.
12. Ball-Milling-Triggered Synthesis of Si/C/SiC@MCMB Composites from Carbon Dioxide for Improved Lithium Storage Capability, Energy and Fuels, 2023, 37, 746-753.
13. A “Reinforced Concrete” Structure of Silicon Embedded into an In Situ Grown Carbon Nanotube Scaffold as a High-Performance Anode for Sulfide-Based All-Solid-State Batteries, ACS Applied Energy Materials, 2022, 5, 14353-14360.
14. Improved Lithium Storage Capability of Si Anode by Ball-Milling Produced Graphitic Carbon Sheet and Fe3O4 Nanoparticles, Journal of Electronic Materials, 2022, 51, 4780–4789.
15. A low temperature MgH2-AlCl3-SiO2 system to synthesize nano-silicon for high-performance Li-ion batteries, Chemical Engineering Journal, 2021,406, 126805.
16. In Situ Synthesis of a Si/CNTs/C Composite by Directly Reacting Magnesium Silicide with Lithium Carbonate for Enhanced Lithium Storage Capability, Energy and Fuels, 2021, 35, 24, 20386–20393.
17.One-pot synthesis of nanocrystalline SnS@tremella-like porous carbon by supercritical CO2 method for excellent sodium storage performance, Electrochimica Acta, 2021,373,137933.
2021年之前发表的代表性论文(第一或通讯作者)
[1] Jiage Yu, Kun Wang, Wenglong Song, Hui Huang*, Chu Liang, Yang Xia, Jun Zhang, Yongping Gan, Fang Wang, Wenkui Zhang*, A low temperature MgH2-AlCl3-SiO2 system to synthesize nano-silicon for high-performance Li-ion batteries, Chemical Engineering Journal, 2021,406, 126805
[2] Qiu yang, Huang Hui*, Song Wenlong, Gan Yongping, Wang Kun, Zhang Jun, Xia Yang, Liang Chu, Zhang Wenkui*. In-situ electrolytic synthesis and superior lithium storage capability of Ni–NiO/C nanocomposite by sacrificial nickel anode in molten carbonates. Journal of Alloys and Compounds, 2020, 834, 155111.
[3] Huang Hui, Qiu Yang, Liang Chu, Zhang Jun, Gan yongping, Xia Yang, He Xinping, Zhang Wenkui*. Tremella-like porous carbon derived from one-step electroreduction of molten carbonates with superior rate capability for sodium-ion batteries. Ionics, 2018, 24: 2233-2239.
[4] Bian Feixiang, Yu Jiage, Song Wenlong, Huang Hui*, Liang Chu, Gan Yongping, Xia Yang, Zhang Jun, He Xinping, Zhang Wenkui*. A new magnesium hydride route to synthesize morphology-controlled Si/rGO nanocomposite towards high-performance lithium storage. Electrochimica Acta, 2020, 330: 135248.
[5] Shi Cheng, Huang Hui*, Xia Yang, Yu Jiage, Fang Ruyi, Liang Chu, Zhang Jun, Gan Yongping, Zhang Wenkui*. Importing tin nanoparticles into biomass-derived silicon oxycarbides with high-rate cycling capability based on supercritical fluid technology. Chemistry-A European Journal, 2019, 25:7719-7725.
[6] Huang Hui, Shi Cheng, Fang Ruyi, Xia Yang, Liang Chu, Gan Yongping, Zhang Jun, Wenkui Zhang*, Bio-templated fabrication of MnO nanoparticles in SiOC matrix with lithium storage properties, Chemical Engineering Journal, 2019, 359: 584-593.
[7] Yu Li, Huang Hui*, Jiage Yu, Yang Xia, Chu Liang, Yongping Gan, Jun Zhang, Wenkui Zhang*, Improved high rate capability of Li[Li0.2Mn0.534Co0.133Ni0.133]O2 cathode material by surface modification with Co3O4, Journal of Alloys and Compounds, 2019, 783: 349-356.
[8] Jiage Yu, Huang Hui*, Feixiang Bian, Chu Liang, Yang Xia, Jun Zhang, Yongping Gan, and Wenkui Zhang, Supercritical CO2-fluid-assisted synthesis of TiO2 quantum dots/reduced graphene oxide composites for outstanding sodium storage capability, ACS Applied Energy Materials, 2018, 1: 7213-7219.
[9] Yu jiage, Huang Hui*, Gan Yongping, Xia Yang, Liang Chu, Zhang Jun, Tao Xinyong, Wenkui Zhang, A new strategy for the construction of 3D TiO2 nanowires/reduced graphene oxide for high-performance lithium/sodium batteries, Journal of Materials Chemistry A, 2018, 6: 24256- 24266.
[10] Huang Hui, Cheng Cheng, Liang Sheng, Liang Chu*, Xia Yang, Gan Yongping, Zhang Jun, Tao Xinyong, Zhang Wenkui*, Toast-like porous carbon derived from one-step reduction of CaCO3 for electrochemical lithium storage, Carbon, 2018, 130, 559-565.
[11] Liang Chu, Liang Sheng, Xia Yang, Chen Yun, Huang Hui*, Gang Yongping, Tao Xingyon, Zhang Jun, Zhang wenkui*, H2O-induced self-propagating synthesis of hierarchical porous carbon: a promising lithium storage material with superior rate capability and ultra-long cycling life, Journal of Materials Chemistry A, 2017, 5, 18221-18229.
[12] Huang Hui, Yu Jiage, GanYongping, Xia Yang, Liang Chu, Zhang Jun, Tao Xingyon, Zhang Wenkui*, Hybrid nanoarchitecture of TiO2 nanotubes and graphene sheet for advanced lithium ion batteries, Materials Research Bulletin, 2017,96, 425-430.
[13] Huang Hui, Shen Yong, Xia Yang, Liang Chu, Gan Yongping, Tao Xingyon, Zhang Jun, Zhang Wenkui*, C-S hybrids prepared by electrodeposition and thermal diffusion methods from kapok- based amorphous carbon flake as the cathode materials of Li-S batteries, New Carbon Materials, 2017,32, 427-433.
[14] Huang Hui, Liu Junjie, Xia Yang, Cheng Cheng, Liang Chu, Gan Yongping, Zhang Jun, Tao Xinyong, Zhang Wenkui*, Supercritical fluid assisted synthesis of titanium carbide particles embedded in mesoporous carbon for advanced Li-S batteries, Journal of alloys and Compounds, 2017, 706, 227-233.
[15] Zhang Liyuan, Huang Hui*, Xia Yang, Liang Chu, Zhang WenKui*, Luo Jianming, Gan Yongpin, Zhang Jun, Tao Xingyon, Fan Hongjin, High-content of sulfur uniformly embedded in mesoporous carbon: a new electrodeposition synthesis and an outstanding lithium-sulfur battery cathode, Journal of Materials Chemistry A, 2017,5, 5905-5911.
[16] Huang Hui, Feng Tong, Gan Yongping, Fang Mingyu, Xia Yang, Liang Chu, Tao Xinyong, Zhang Wenkui*, TiC/NiO core/shell nanoarchitecture with battery-capacitive synchronous lithium storage for high-performance lithium-ion battery, ACS Applied Materials & Interfaces, 2015, 7, 11842-11848.
[17] Zhu Wenjun, Huang, Hui*, Zhang Wenkui, Tao Xinyong, Gan Yongping, Xia Yang, Yang Hui, Guo Xingzhong, Synthesis of MnO/C composites derived from pollen template for advanced lithium-ion batteries, Electrochimica Acta, 2015, 152: 286-293.
[18] Zhang Liyuan, Huang Hui*, Yin Hailin, Xia Yang, Luo Jianmin, Liang Chu, Gan Yongping, Tao Xinyong, Zhang Wenkui, Sulfur synchronously electrodeposited onto exfoliated graphene sheets as a cathode material for advanced lithium-sulfur batteries, Journal of Materials Chemistry A, 2015, 3, 16513-16519.
[19] Huang Hui, Zhang Liyuan, Xia Yang, Gan Yongping, Tao Xinyong, Liang Chu, Zhang Wenkui, Well-dispersed ultrafine Mn3O4 nanocrystals on reduced graphene oxide with high electrochemical Li-storage performance, New Journal of Chemistry , 2014. 38, 4743-4747.
[20] Zhu Wenjun; Huang Hui*; Gan Yongping; Tao Xinyong; Xia Yang; Zhang Wenkui, Mesoporous cobalt monoxide nanorods grown on reduced graphene oxide nanosheets with high lithium storage performance, Electrochimica Acta, 2014, 138, 376-382.
[21] Zhen Qiu, Hui Huang*,Jun Du, Xinyong Tao, Yang Xia, Tong Feng, Yongping Gan, Wenkui Zhang, Biotemplated synthesis of bark-structured TiC nanowires as Pt catalyst support with enhanced electrocatalytic activity and durability for methanol oxidation. Journal of Materials Chemistry A, 2014.
[22] Hui Huang, Zhaoyang Yu, Wenjun Zhu, Yongping Gan, Yang Xia, Xinyong Tao, Wenkui Zhang*, Hierarchically porous nanoflowers from TiO2-B nanosheets with ultrahigh surface area for advanced lithium-ion batteries, Journal of Physics and Chemistry of Solids, 2014, 75, 619-623.
[23] Zhen Qiu, Hui Huang*, Jun Du, Tong Fen, Wenkui Zhang, Yongping Gan, Xinyong Tao, NbC nanowire-supported Pt nanoparticles as a high performance catalyst for methanol electro- oxidation, Journal Physical Chemistry C, 2013, 117, 13770-13775.
[24] Hui Huang, Junwu Fang, Yang Xia, Xinyong Tao, Yongping Gan, Jun Du, Wenjun Zhu, Wenkui Zhang*, Construction of sheet/belt hybrid nanostructures by one-dimensional mesoporous TiO2(B) nanobelts and graphene sheets for advanced lithium-ion batteries Journal of Materials Chemistry A, 2013, 1, 2495-2500.
[25] Hui Huang*, Yang Xia, Xinyong Tao, Jun Du, Junwu Fang, Yongping Gan, Wenkui Zhang*, Highly efficient electrolytic exfoliation of graphite into graphene sheets based on Li ions intercalation-expansion-microexplosion mechanism. Journal of Materials Chemistry, 2012, 22, 10452-10456.
[26] Hui Huang, Wenjun Zhu, Xinyong Tao, Yang Xia, Zhaoyang Yu, Junwu Fang, Yongping Gan, Wenkui Zhang*, Nanocrystal-constructed mesoporous single-crystalline Co3O4 nanobelts with superior rate capability for advanced lithium-ion batteries. ACS Applied Materials & Interfaces 2012, 4, 5974−5980.
[27] Hui Huang, Hongfeng Chen, Yang Xia, Xinyong Tao, Yongping Gan, Xianxian Weng, Wenkui Zhang*, Controllable synthesis and visible-light-responsive photocatalytic activity of Bi2WO6 fluffy microsphere with hierarchical architecture. Journal of Colloid and Interface Science 2012, 370, 132-138.
授权发明专利(2020.1.1~至今)
1. 一种碳化硅粉体的制备方法,ZL 2022100318682, 2023.05.26。
2. 一种制备非晶硅/碳复合材料的方法,ZL2019107916115, 2023.03.14。
3. 一种利用超临界CO2流体介质制备Si/Fe/Fe3O4/C复合材料的方法,ZL2021109808131, 2023.03.14。
4. 一种原位碳包覆制备核壳型硅/碳复合材料的方法及其应用,ZL2019105934833,2021.10.15。
5. 一种低温制备硅/碳化硅材料的方法,ZL 2019107916064,2021.10.15。
6. 一种超临界二氧化碳流体制备二氧化硅/石墨烯复合材料的方法及应用,ZL2017114981321,2021.03.23
7. 一种超临界二氧化碳流体制备二氧化钛/石墨烯复合材料的方法及应用,ZL2017114978386,2021.03.02
8. 一种Ni-NiO/C复合材料的制备方法及应用,ZL2019100131119,2020.12.15