第一作者/通讯作者:
[1] Xian Zhou, Shitong Ye, Shufang Zhao*, Houhong Song, Hantao Gong, Shurui Fan, Mingjie Liu, Maolin Wang, Wenhua Zhou, Jinjia Liu, Siyu Yao*, and Lili Lin*. Unraveling Structure Sensitivity in the Photocatalytic Dehydrogenative C–C Coupling of Acetone to 2,5-Hexanedione over Pt/TiO2 Catalysts, ACS Catalysis, 2023, 13, 11825–11833.
[2] Yangzhi Xu, Maolin Wang, Zhiwei Xie, Dong Tian, Guan Sheng, Xin Tang, Haibo Li, Yichao Wu, Chuqiao Song, Xiaofeng Gao, Siyu Yao, Ding Ma*, Lili Lin*.Insights into the interfacial structure of Cu/ZrO2 catalysts for methanol synthesis from CO2 hydrogenation: Effects of Cu-supported nano-ZrO2 inverse interface, Chemical Engineering Journal, 2023, 470, 144006.
[3] Xiaofei Lu, Chuqiao Song, Xingyu Qi, Duanxing Li, Lili Lin*. Confinement Effects in Well-Defined Metal–Organic Frameworks (MOFs) for Selective CO2 Hydrogenation: A Review. International Journal of Molecular Sciences, 2023, 24(4): 4228.
[4] Shurui Fan, Zihao Yao, Wei Cheng, Xian Zhou, Yao Xu, Xuetao Qin, Siyu Yao, Xi Liu*, Jianguo Wang*, Xiaonian Li*, Lili Lin*. Subsurface Ru- Triggered Hydrogenation Capability of TiO2–x Overlayer for Poison-Resistant Reduction of N-Heteroarenes. ACS Catalysis, 2023, 13, 1, 757–765.
[5] Lin, L.; Zhou, W.; Gao, R.; Yao, S.; Zhang, X.; Xu, W.; Zheng, S.; Jiang, Z.; Yu, Q.; Li, Y. W.; Shi, C.; Wen, X. D.; Ma, D., Low-temperature hydrogen production from water and methanol using Pt/alpha-MoC catalysts. Nature 2017,544 (7648), 80-83.
[6] Lin, L.; Yao, S.; Gao, R.; Liang, X.; Yu, Q.; Deng, Y.; Liu, J.; Peng, M.; Jiang, Z.; Li, S.; Li, Y. W.; Wen, X. D.; Zhou, W.; Ma, D., A highly CO-tolerant atomically dispersed Pt catalyst for chemoselective hydrogenation. Nature Nanotechnology 2019,14 (4), 354-361.
[7] Lin, L.; Yu, Q.; Peng, M.; Li, A.; Yao, S.; Tian, S.; Liu, X.; Li, A.; Jiang, Z.; Gao, R.; Han, X.; Li, Y.-w.; Wen, X.-d.; Zhou, W.; Ma, D., Atomically Dispersed Ni/α-MoC Catalyst for Hydrogen Production from Methanol/Water. Journal of the American Chemical Society 2020,1, 309-317.
[8] Lin, L.; Liu, J.; Liu, X.; Gao, Z.; Rui, N.; Yao, S.; Zhang, F.; Wang, M.; Liu, C.; Han, L.; Yang, F.; Zhang, S.; Wen, X. D.; Senanayake, S. D.; Wu, Y.; Li, X.; Rodriguez, J. A.; Ma, D., Reversing sintering effect of Ni particles on gamma-Mo2N via strong metal support interaction. Nature Communications 2021,12 (1), 6978.
[9] Lin, L.*; Gerlak, C. A.; Liu, C.; Llorca, J.; Yao, S.; Rui, N.; Zhang, F.; Liu, Z.; Zhang, S.; Deng, K., Effect of Ni particle size on the production of renewable methane from CO2 over Ni/CeO2 catalyst. Journal of Energy Chemistry 2021,61, 602-611.
[10]Lin, L.; Ge, Y.; Zhang, H.; Wang, M.; Xiao, D.; Ma, D., Heterogeneous Catalysis in Water. JACS Au 2021,1 (11), 1834-1848.
[7] Wu, C.; Lin, L.*; Liu, J.; Zhang, J.; Zhang, F.; Zhou, T.; Rui, N.; Yao, S.; Deng, Y.; Yang, F.; Xu, W.; Luo, J.; Zhao, Y.; Yan, B.; Wen, X.-D.; Rodriguez, J. A.; Ma, D., Inverse ZrO2/Cu as a highly efficient methanol synthesis catalyst from CO2 hydrogenation. Nature communications 2020,11 (1), 1-10.
[11] Lin, L.; Yao, S. Y.; Rui, N.; Han, L. ; Zhang, F.; Gerlak, ; C. A.; Liu, Z. Y.; Cen, J.J.; Song, L.; Senanayake, S. D.; Xin, H. L.; Chen, J. G. ; Rodriguez, J. A., Conversion of CO2 on a highly active and stable Cu/FeOx/CeO2 catalyst: tuning catalytic performance by oxide-oxide interactions. Catalysis Science & Technology 2019,9 (14), 3735-3742.
[12] Lin, L.; Yao, S.; Liu, Z.; Zhang, F.; Li, N.; Vovchok, D.; Martínez-Arias, A.; Castañeda, R.; Lin, J.; Senanayake, S. D.; Su, D.; Ma, D.; Rodriguez, J. A., In Situ Characterization of Cu/CeO2 Nanocatalysts for CO2 Hydrogenation: Morphological Effects of Nanostructured Ceria on the Catalytic Activity. The Journal of Physical Chemistry C 2018,122 (24), 12934-12943.
[13] Deng, Y.#; Gao, R.#; Lin, L.#; Liu, T.; Wen, X.-D.; Wang, S.; Ma, D., Solvent Tunes the Selectivity of Hydrogenation Reaction over α-MoC Catalyst. Journal of the American Chemical Society 2018,140 (43), 14481-14489.
[14] Lin, L. L.; Sheng, W. C.; Yao, S. Y.; Ma, D.; Chen, J. G., Pt/Mo2C/C-cp as a highly active and stable catalyst for ethanol electrooxidation. J Power Sources 2017,345, 182-189.
参与发表
12.Marcos, F. C.; Cavalcanti, F. M.; Petrolini, D. D.; Lin, L.; Betancourt, L. E.; Senanayake, S. D.; Rodriguez, J. A.; Assaf, J. M.; Giudici, R.; Assaf, E. M., Effect of operating parameters on H2/CO2 conversion to methanol over Cu-Zn oxide supported on ZrO2 polymorph catalysts: Characterization and kinetics. Chemical Engineering Journal 2022,427, 130947.
13.Yang, F.; Zhao, H.; Wang, W.; Wang, L.; Zhang, L.; Liu, T.; Sheng, J.; Zhu, S.; He, D.; Lin, L., Atomic origins of the strong metal–support interaction in silica supported catalysts. Chemical science 2021,12 (38), 12651-12660.
14.Li, S.; Cao, R.; Xu, M.; Deng, Y.; Lin, L.; Yao, S.; Liang, X.; Peng, M.; Gao, Z.; Ge, Y.; Liu, J.-X.; Li, W.-X.; Zhou, W.; Ma, D., Atomically dispersed Ir/α-MoC catalyst with high metal loading and thermal stability for water-promoted hydrogenation reaction. National Science Review 2021.
15.Han, L.; Ren, Z.; Ou, P.; Cheng, H.; Rui, N.; Lin, L.; Liu, X.; Zhuo, L.; Song, J.; Sun, J., Modulating Single‐Atom Palladium Sites with Copper for Enhanced Ambient Ammonia Electrosynthesis. Angewandte Chemie 2021,133 (1), 349-354.
16.Zhang, T.; Lin, L.; Li, Z.; He, X.; Xiao, S.; Shanov, V. N.; Wu, J., Nickel–Nitrogen–Carbon Molecular Catalysts for High Rate CO2 Electro-reduction to CO: On the Role of Carbon Substrate and Reaction Chemistry. ACS Applied Energy Materials 2020,3 (2), 1617-1626.
17.Zhang, F.; Liu, Z.; Chen, X.; Rui, N.; Betancourt, L. E.; Lin, L.; Xu, W.; Sun, C.-j.; Abeykoon, A. M.; Rodriguez, J. A., Effects of Zr Doping into Ceria for the Dry Reforming of Methane over Ni/CeZrO2 Catalysts: In Situ Studies with XRD, XAFS, and AP-XPS. ACS Catalysis 2020,10 (5), 3274-3284.
18.Marcos, F. C.; Lin, L.; Betancourt, L. E.; Senanayake, S. D.; Rodriguez, J. A.; Assaf, J. M.; Giudici, R.; Assaf, E. M., Insights into the methanol synthesis mechanism via CO2 hydrogenation over Cu-ZnO-ZrO2 catalysts: Effects of surfactant/Cu-Zn-Zr molar ratio. Journal of CO2 Utilization 2020,41, 101215.
19.Ge, Y.; Qin, X.; Li, A.; Deng, Y.; Lin, L.; Zhang, M.; Yu, Q.; Li, S.; Peng, M.; Xu, Y., Maximizing the Synergistic Effect of CoNi Catalyst on α-MoC for Robust Hydrogen Production. Journal of the American Chemical Society 2020.
20.Deng, K.; Lin, L.; Rui, N.; Vovchok, D.; Zhang, F.; Zhang, S.; Senanayake, S. D.; Kim, T.; Rodriguez, J. A., Studies of CO2 hydrogenation over cobalt/ceria catalysts with in situ characterization: the effect of cobalt loading and metal–support interactions on the catalytic activity. Catalysis Science & Technology 2020,10 (19), 6468-6482.
21.Yao, S.; Lin, L.; Liao, W.; Rui, N.; Li, N.; Liu, Z.; Cen, J.; Zhang, F.; Li, X.; Song, L., Exploring Metal-Support Interactions to Immobilize Sub-nm Co Clusters on γ-Mo2N: A Highly Selective and Stable Catalyst for CO2 Activation. ACS Catalysis 2019.
22.Liu, Z.; Zhang, F.; Rui, N.; Li, X.; Lin, L.; Betancourt, L. E.; Su, D.; Xu, W.; Cen, J.; Attenkofer, K., Highly Active Ceria Supported Ru Catalyst for the Dry Reforming of Methane: In-situ Identification of Ruδ+-Ce3+ Interactions for Enhanced Conversion. ACS Catalysis 2019.
23.Yin, Z.; Wang, Y.; Song, C.; Zheng, L.; Ma, N.; Liu, X.; Li, S.; Lin, L.; Li, M.; Xu, Y., Hybrid Au–Ag nanostructures for enhanced plasmon-driven catalytic selective hydrogenation through visible light irradiation and surface-enhanced Raman scattering. Journal of the American Chemical Society 2018,140 (3), 864-867.
24.Li, S.; Ren, P.; Yang, C.; Liu, X.; Yin, Z.; Li, W.; Yang, H.; Li, J.; Wang, X.; Wang, Y.; Lin, L, ; Yao, S, Xiaodong, Wen,; Ma, D., Fe5C2 nanoparticles as low-cost HER electrocatalyst: the importance of Co substitution. Science Bulletin 2018,63 (20), 1358-1363.
25.Ge, Y.; Lin, L.; Yao, S.; Zhou, W.; Wen, X.-D.; Shi, C.; Ma, D.; Catalysis for efficient low-temperature hydrogen production and storage. Chinese Science Bulletin 2018,63 (21), 2140-2147.
26.Zhang, X. B.; Zhu, X. B.; Lin, L. L.; Yao, S. Y.; Zhang, M. T.; Liu, X.; Wang, X. P.; Li, Y. W.; Shi, C.; Ma, D., Highly Dispersed Copper over beta-Mo2C as an Efficient and Stable Catalyst for the Reverse Water Gas Shift (RWGS) Reaction. Acs Catalysis 2017,7 (1), 912-918.
27.Zhai, P.; Chen, P.-P.; Xie, J.; Liu, J.-X.; Zhao, H.; Lin, L.; Zhao, B.; Su, H.-Y.; Zhu, Q.; Li, W.-X., Carbon induced selective regulation of cobalt-based Fischer–Tropsch catalysts by ethylene treatment. Faraday discussions 2017,197, 207-224.
28.Yao, S.; Zhang, X.; Zhou, W.; Gao, R.; Xu, W.; Ye, Y.; Lin, L.; Wen, X.; Liu, P.; Chen, B., Atomic-layered Au clusters on α-MoC as catalysts for the low-temperature water-gas shift reaction. Science 2017,357 (6349), 389-393.
29.Yao, S.; Yang, C.; Zhao, H.; Li, S.; Lin, L.; Wen, W.; Liu, J.; Hu, G.; Li, W.; Hou, Y., Reconstruction of the Wet Chemical Synthesis Process: The Case of Fe5C2 Nanoparticles. The Journal of Physical Chemistry C 2017,121 (9), 5154-5160.
30.Li, S.; Yang, C.; Yin, Z.; Yang, H.; Chen, Y.; Lin, L.; Li, M.; Li, W.; Hu, G.; Ma, D., Wet-chemistry synthesis of cobalt carbide nanoparticles as highly active and stable electrocatalyst for hydrogen evolution reaction. Nano Research 2017, 1-7.
31.Li, S.; Xu, Y.; Chen, Y.; Li, W.; Lin, L.; Li, M.; Deng, Y.; Wang, X.; Ge, B.; Yang, C., Tuning the selectivity of catalytic carbon dioxide hydrogenation over iridium/cerium oxide catalysts with a strong metal–support interaction. Angewandte Chemie International Edition 2017,56 (36), 10761-10765.
32.Yin, Z. G., Dunfeng, Yao, Siyu, Zhao, Bo, ; Cai, Fan, Lin, L,Tang, Pei, Zhai, Peng, Wang, Guoxiong.; Ma, Ding, Highly selective palladium-copper bimetallic electrocatalysts for the electrochemical reduction of CO2 to CO. Nano Energy 2016, 27, 35-43.
33.Yin, Z.; Zhang, W.; Fu, Q.; Yue, H.; Wei, W.; Tang, P.; Li, W.; Li, W.; Lin, L.; Ma, G., Construction of stable chainlike Au nanostructures via silica coating and exploration for potential photothermal therapy. small 2014,10 (18), 3619-3624.
34.Yin, Z.; Lin, L. L.; Ma, D., Construction of Pd-based nanocatalysts for fuel cells: opportunities and challenges. Catalysis Science & Technology 2014,4 (12), 4116-4128.