已发表论文
1.Pan, T.; Yang, K.; Dong, X.; Zuo, S.; Emwas, A.; Chen, C.; Li, G.; Han, Y.* Strategies for high-temperature methyl iodide capture in azolate-based metal organic frameworks. Nat. Comm., 2024, 15, 2630.
2.Yang, K.#; Pan, T.#; Ferhat, N.; Felix, A.; Waller, R.; Jones, J.; Hong, P.; Vrouwenvelder, J.; Gan, Q.*; Han, Y.* A solar-driven atmospheric water extractor for off-grid freshwater generation and irrigation. Nat. Comm., 2024, 15, 6260.
3.Yang, K.#; Pan, T.#; Dang, S.; Gan, Q.*; Han, Y.* Three-dimensional open architecture enabling salt-rejection solar evaporators with boosted water production efficiency. Nat. Comm., 2022, 13, 6653.
4.Pan, T.; Yang, K.; Dong, X.; Tao, J.*; Han, Y.* Creating Cu(I) sites in an MOF for reversible capture of molecular iodine at low concentrations and high temperatures. ACS Materials Lett. 2024, 6, 2794−2801.
5.Pan, T.; Yang, K.; Dong, X.; Han, Y.* Adsorption-based capture of iodine and organic iodides: status and challenges. J. Mater. Chem. A, 2023, 11, 5460-5475.
6.Pan, T.; Dong, X.; Han, Y.* Efficient capture of iodine and methyl iodide using all-silica EMM-17 zeolite. Nano Research, 2023, 16, 6308-6315.
7.Pan, T.; Yang, K.; Han, Y.* Recent progress of atmospheric water harvesting using metal-organic frameworks. Chemical Research in Chinese Universities, 2020, 36, 33-40.
8.Pan, T.; Chen, B.* Facile fabrication of Shewanella@graphene core-shell material and its enhanced performance in nitrobenzene reduction. Science of the Total Environment, 2019, 658, 324-332.
9.Yang, K.#; Pan, T.#; Pinnau, I.; Han, Y.* Simultaneous generation of atmospheric water and electricity using a hygroscopic aerogel with fast sorption kinetics. Nano Energy, 2020, 78, 105326.
10.Yang, K.#; Pan, T.#; Lei, Q.; Dong, X.; Cheng, Q.; Han, Y.* A roadmap to sorption-based atmospheric water harvesting: from molecular sorption mechanism to sorbent design and system optimization. Environ. Sci. Technol., 2021, 55, 6542-6560.
11.Zhang, Y.#; He L.#; Pan, T.#; Xie, J.; Wu, F.; Dong, X.; Wang, X.; Chen, L.; Gong, S.; Liu, W.; Kang, L.; Chen, J.; Chen, L.; Chen, L.*; Han, Y.*; Wang, S.* Superior iodine uptake capacity enabled by an open metal-sulfide framework composed of three types of active sites. CCS Chemistry, 2022, 0, 1-9.
12.Yang, K.; Pan, T.; Qiang, Z. Cheng, C, Zhu, X.; Wang, P.; Chen, B.* Dual-function ultrafiltration membrane constructed from pure activated carbon particles via facile nanostructure reconstruction for high-efficient water purification. Carbon, 2020, 168, 254-263.
13.Yang, K.; Pan, T.; Hong, S.; Zhang, K.; Zhu, X.; Chen, B.* Ultrathin graphene oxide membrane with constructed tent-shaped structures for efficient and tunable molecular sieving. Environ. Sci.: Nano, 2020, 7, 2373-2384.
14.Xie, Y.; Pan, T.; Lei, Q.; Chen, C.; Dong, X.; Yuan, Y.; Maksoud, W.; Zhao, L.; Cavallo, L.; Pinnau, I.; Han, Y.* Efficient and simultaneous capture of iodine and methyl iodide achieved by a covalent organic framework. Nat. Comm., 2022, 13, 2878.
15.Xie, Y.; Pan, T.; Lei, Q.; Chen, C.; Dong, X.; Yuan, Y.; Shen, J.; Cai, Y.; Zhou, C.; Pinnau, I.; Han, Y.* Ionic functionalization of multivariate covalent organic frameworks to achieve an exceptionally high iodine-capture capacity. Angew. Chem. Int. Ed., 2021, 60, 22432–22440.
16.Liu, X.; Liu, L.; Pan, T.; Yan, N.; Dong, X.; Li, Y.; Chen, L.; Tian, P.; Han, Y.*; Guo, P.*; Liu, Z. The complex crystal structure and abundant local defects of zeolite EMM-17 unraveled by combined electron crystallography and microscopy. Angew. Chem. Int. Ed., 2021, 60, 24227–24233.
17.Chen, C.; Meng, L.; Cao, L.; Zhang, D.; An, S.; Liu, L.; Wang, J.; Li, G.; Pan, T.; Shen, J.; Chen, Z.; Shi, Z.; Lai, Z.*; Han, Y.* Phase engineering of zirconium MOFs enables efficient osmotic energy conversion: structural evolution unveiled by direct imaging. J. Am. Chem. Soc. 2024, 146, 11855-11865.
18.Zhang, Z.; Dong, X.; Yin, J.; Li, Z.; Li, X.; Zhang, D.; Pan, T.; Lei, Q.; Liu, Q.; Xie, Y.; Shui, F.; Li, J.; Yi, M.; Yuan, J.; You, Z.; Zhang, L.; Chang, J.; Zhang, H.; Li, W.; Fang, Q.; Li, B.*; Bu, X.*; Han, Y.* Chemically stable guanidinium covalent organic framework for the efficient capture of low-concentration iodine at high temperatures. J. Am. Chem. Soc., 2022, 144, 6821-6829.
19.He, L.; Chen, L.; Dong, X.; Zhang, S.; Zhang, M.; Dai, X.; Liu, X.; Lin, P.; Li, K.; Chen, C.; Pan, T.; Ma, F.; Chen, J.; Yuan, M.; Zhang, Y.; Chen, L.; Zhou, R.; Han, Y.*; Chai, Z.; Wang, S.* A nitrogen-rich covalent organic framework for simultaneous dynamic capture of iodine and methyl iodide. Chem, 2021, 7, 699-714.
20.Shui, F.; Lei, Q.; Dong, X.; Pan, T.; Zhang, Z.; Li, J.; Yi, M.; Zhang, L.; Liu, X.; You, Z.; Yang, S.; Yang, R.; Zhang, H.; Li, J.; Shi, Z.; Yin, J.*; Li, B.*; Bu, X.* Iodine nanotrap for highly efficient iodine capture under high temperature. Chemical Engineering Journal 2023, 468, 143525.