[19] M. Kang*, L. Chen, S. Qin, L. Ma, A. Rui, and S. Li*, “Bifunctional Electromagnetic Manipulation of Surface Waves Using Metasurfaces Under One Circularly Polarized Incidence,” Photonics 12, 91 (2025).
[18] D. Li, X. Peng*, H. Cao, Y. Xie, S. Li, X. Sun, and X. Zhao, “Real-Time Polarimetric Imaging and Enhanced Deep Learning Model for Automated Defect Detection of Specular Additive Manufacturing Surfaces,” Photonics 12, 243 (2025).
[17] Y. Xia, X. Peng*, S. Li, H. Li, B. Wang, X. Zhao, F. Shi, S. Qiao, S. Li, and X. Sun, “Enhancing Selective Laser Melting Quality of High-Performance Aluminum Alloys Through Laser Parameter Optimization: A Coupled Multiphysics Simulation Study,” Photonics 12, 277 (2025).
[16] S. Li, K. L. Tsakmakidis*, T. Jiang, Q. Shen, H. Zhang, J. Yan, S. Sun, and L. Shen*, “Unidirectional guided-wave-driven metasurfaces for arbitrary wavefront control,” Nature Communications 15, 5992 (2024).
[15] S. Li#, W. Tu#, H. Zhang, J. Yan, and L. Shen*, “Surface wave control via unidirectional surface magnetoplasmon waveguide arrays,” Optical Materials Express 14, 996 (2024).
[14] T. Jiang*, D. Liang, H. Liang, L. Zhou, T. Zhou*, S. Li, and L. Shen, “Wideband Isolator Based on One-way Surface Magnetoplasmons with Ultra-High Isolation,” Scientific Reports 14, 17474 (2024).
[13] Y. Chen#, X. Zheng#, X. Zhang, W. Pan, Z. Wang, S. Li, S. Dong, F. Liu*, Q. He, L. Zhou*, and S. Sun*, “Efficient Meta-couplers Squeezing Propagating Light into On-Chip Subwavelength Devices in a Controllable Way,” Nano Letters 23, 3326 (2023).
[12] W. Pan, Z. Wang, Y. Chen, X. Zheng, S. Li, X. Tian, Q. He, L. Zhou*, and S. Sun*, “Efficiently controlling near-field wavefronts via designer metasurfaces,” ACS Photonics 7, 2423 (2023).
[11] S. Dong#, S. Li#, X. Ling, G. Hu, Y. Li, H. Zhu*, L. Zhou, and S. Sun*, “Broadband spin-unlocked metasurfaces for bifunctional wavefront manipulations,” Applied Physics Letters 120, 181702 (2022).
[10] W. Pan, Z. Wang, Y. Chen, S. Li, X. Zheng, X. Tian, C. Chen, N. Xu, Q He, L. Zhou*, and S. Sun*,“High-efficiency generation of far-field spin-polarized wavefronts via designer surface wave metasurfaces,” Nanophotonics 11, 2025 (2022).
[9] S. Li, S. Dong, S. Yi, W. Pan, Y. Chen, F. Guan, H. Guo, Z. Wang, Q. He, L. Zhou, and S. Sun*, “Broadband and high-efficiency spin-polarized wave engineering with PB metasurfaces,” Optics Express 28, 15601 (2020).
[8] S. Li#, Z. Wang#, S. Dong, S. Yi, F. Guan, Y. Chen, H. Guo, Q. He, S. Sun*, and L. Zhou*, “Helicity-delinked manipulations on surface waves and propagating waves by metasurfaces,” Nanophotonics 9, 3473 (2020).
[7] Z. Wang#, S. Li#, X. Zhang#, X. Feng, Q. Wang, J. Han, Q. He, W. Zhang, S. Sun*, and L. Zhou*, “Excite spoof surface plasmons with tailored wavefronts using high-efficiency terahertz metasurfaces,” Advanced Science 7, 2000982 (2020).
[6] S. Dong, Q. Zhang*, G. Cao, J. Ni, T. Shi, S. Li, J. Duan, J. Wang, Y. Li*, S. Sun, L. Zhou, G. Hu, and C.-W. Qiu*,“On-chip trans-dimensional plasmonic router,” Nanophotonics 9, 3357 (2020).
[5] S. Dong, Z. Wang, H. Guo, F. Guan, X. Li, Q. He, H. Zhao, L. Zhou, and S. Sun*,“Dielectric meta-walls for surface plasmon focusing and Bessel beam generation,” Europhysics Letters 122, 67002 (2018).
[4] F. Zhu, X. Li, and L. Shen, “Subwavelength guiding of channel plasmon polaritons in a semiconductor at terahertz frequencies,” Applied Optics 53, 5896-5900 (2014).
[3] X. Li, T. Jiang, L. Shen*, and X. Deng, “Subwavelength guiding of channel plasmon polaritons by textured metallic grooves at telecom wavelengths,” Applied Physics Letters 102, 031606 (2013).
[2] J. Lu, L. Shen*, X. Deng, X. Li, and X. Zheng, “Impact of photonic crystal boundary shape on the existence of one-way edge mode,” Applied Optics 52, 5216 (2013).
[1] X. Li, T. Jiang, L. Shen*, and X. Zheng, “Channel Plasmon Polaritons Guiding by a Partial-Dielectric-Loaded Metallic Groove,” IEEE Photonics Technology Letters 24, 2265 (2012).