学术论文
[1] Yanan Song, Liang Gao, Xinyu Li, Weiming Shen, Kunkun Peng. A novel vision-based multi-task robotic grasp detection method for multi-object scenes. Science China Information Sciences, 2022, 65(12): 222104. (IF: 8.8/JCR Q1)
[2] Yanan Song, Liang Gao, Xinyu Li, Weiming Shen. A novel robotic grasp detection method based on region proposal networks. Robotics and Computer Integrated Manufacturing, 2020, 65: 101963. (IF:10.4/ JCR Q1)
[3] Yanan Song, Quan-ke Pan, Liang Gao, Biao Zhang. Improved non-maximum suppression for object detection using harmony search algorithm. Applied Soft Computing, 2019, 81: 105478. (IF: 8.7/ JCR Q1)
[4] Yanan Song, Weiming Shen, Kunkun Peng. A novel partial point cloud registration method based on graph attention network. The Visual Computer, 2023, 39: 1109-1120. (IF:3.5/ JCR Q2)
[5] Yanan Song, Weiming Shen, Peng Lu. A novel partial-to-partial registration method based on sampling network. Journal of Visual Communication and Image Representation, 2022, 82: 103411. (IF:2.6/ JCR Q2)
[6] Yanan Song, Liang Gao, Xinyu Li, Weiming Shen. A Novel Point cloud encoding method based on local information for 3D classification and segmentation. Sensors, 2020, 20(9):2501. (IF: 3.9/ JCR Q2)
[7] Yanan Song, Xianfei Liu, Weiming Shen, Yiping Gao, Xianke Zhou, Peng Lu. An Effective Point Cloud Classification Method Based on Improved Non-local Neural Networks, In: IEEE 25th International Conference on Computer Supported Cooperative Work in Design(CSCWD), 2022, pp.665-670. (EI检索)
[8] Yanan Song, Xinyu Li, Liang Gao. Improved non-maximum suppression for detecting overlapping objects. In: 12th International Conference on Machine Vision (ICMV 2019), International Society for Optics and Photonics, 2020. pp. 105-110.(EI检索)
[9] Yanan Song, Xinyu Li, Liang Gao. Deep Learning for 3D Classification Based on Point Cloud with Local Structure. In: 2019 IEEE 2nd International Conference on Information Communication and Signal Processing (ICICSP), 2019. pp. 405-409.(EI检索)
发明专利
[1] 宋亚楠, 刘贤斐, 沈卫明, 等. 基于全局上下文嵌入生成对抗网络的图像异常检测方法,中国,ZL202211503297.4,发明专利授权,2023.04.
[2] 宋亚楠, 刘贤斐, 沈卫明, 等. 一种基于多模态稠密融合网络的物体6D姿态估计方法,中国,ZL202210574035.0,发明专利授权,2022.08.
[3] 宋亚楠, 沈卫明, 曹宁, 等. 一种用于多物体复杂场景的机器人抓取检测方法,中国,ZL202011164176.2,发明专利授权,2022.05.
[4] 宋亚楠, 沈卫明, 陈刚.一种基于特征学习的端到端点云配准方法,中国,ZL202110358537.5,发明专利授权,2022.05.
[5] 宋亚楠, 沈卫明, 陈刚. 一种基于非局部操作的点云配准方法[P]. 中国,ZL202110358528.6,发明专利授权,2022.06
[6] 宋亚楠, 沈卫明, 陈刚. 一种基于学习采样的部分对应点云配准方法[P]. 中国,ZL202110475788.1,发明专利授权,2022.05.
[7] 宋亚楠, 沈卫明, 林光钟, 等. 一种基于在线局部特征提取的点云识别方法[P]. 中国,ZL202011407114.X,发明专利授权,2023.03.
[8] 宋亚楠, 沈卫明, 陈刚, 等. 一种基于图注意力机制的残缺点云配准方法,中国,ZL202110918646.8,发 明专利 授权,2023.10.