论文
1. Dai, C,. Tian, J. X., Chen, Y. F., Ni, Y. H., Cui, L., Cao, H. X., Song, L. L., Xu, S. Y., Wang, Y. J.,* Zheng, Y. G. Computer-aided design to enhance the stability of aldo-keto reductase KdAKR. Biotechnology Journal, 2024, DOI:10.1002/biot.202300637.
2. Xu, S. Y., Chu, R. L., Liu, H. T., Weng, C. Y., Wang, Y. J.,* Zheng, Y. G. Computer-directed rational design enhanced the thermostability of carbonyl reductase LsCR for the synthesis of ticagrelor precursor. Biotechnology and Bioengineering, 2024, DOI:10.1002/bit.28662.
3. Xu, S. Y., Zhou, L., Xu, Y., Hong, H. Y., Dai, C., Wang, Y. J.*, Zheng, Y. G. Recent advances in structure-based enzyme engineering for functional reconstruction. Biotechnology and Bioengineering, 2023, 120 (12): 3427-3445. doi.org/10.1002/bit.28540.
4. Dai, C., Cao, H. X., Tian, J. X., Gao, Y. C., Liu, H. T., Xu, S. Y., Wang, Y. J.*, Zheng, Y. G. Structural-guided design to improve the catalytic performance of aldo-keto reductase KdAKR. Biotechnology and Bioengineering, 2023, 120 (12): 3543-3556. doi.org/10.1002/bit.28535.
5. Liu, H. T., Weng, C. Y., Zhou, L., Xu, H. B., Liao, Z. Y., Hong, H. Y., Ye, Y. F., Li, S. F., Wang, Y. J.*, Zheng, Y. G. Co-evolving stability and activity of LsCR by a single point mutation and constructing neat substrate bioreaction system. Biotechnology and Bioengineering, 2023, 120(6): 1521-1530. DOI: 10.1002/bit.28357.
6. Cheng F., Zhou, S. Y., Chen, L. X., Zhang, W., Li, S. F., Weng, C. Y., Wang, Y. J.*, Zheng, Y. G. Reaction-kinetic model-guided biocatalyst engineering for dual-enzyme catalyzed bioreaction system. Chemical Engineering Journal, 2023, 452: 138997. doi.org/10.1016/j.cej.2022.138997.
7. Li, S. F., Cheng, F., Wang, Y. J.*, Zheng, Y. G. Strategies for tailoring pH performances of glycoside hydrolases. Critical Reviews in Biotechnology, 2023, 43 (1): 121-141. doi: 10.1080/07388551.2021.2004084.
8. Zhang, W., Li, S. F., Zhu, J. Q., Cao, H.X., Liu, H. T., Shao, Z. Q., Xu, S. Y., Wang, Y. J.,* Zheng, Y. G. Constructing a continuous-flow bioreactor with co-immobilized KmAKR and BmGDH for synthesizing tert-butyl 6-cyano-(3R,5R)-dihydroxyhexanoate. Biochemical Engineering Journal, 2023, 197: 108964. https://doi.org/10.1016/j.bej.2023.108964.
9. Qiu, S., Xu, S. Y., Wang, Y. J.*, Zheng, Y. G. Chemoenzymatic catalysis of tert-butyl 6-cyano-(3R,5R)-dihydroxyhexanoate by aldo-keto reductase coupled with composite Fe3O4 nanozyme scaffold. Chemical Engineering Science, 2022, 261: 117935. doi.org/10.1016/j.ces.2022.117935.
10.Weng, C. Y., Gao, X. F. Chu, R. L., Xie, W. B., Wang, Y. J.*, Zheng, Y. G. Protein engineering of carbonyl reductases for asymmetric synthesis of ticagrelor precursor (S)-2-chloro-1-(3,4-difluorophenyl)ethanol. Biochemical Engineering Journal, 2022, 108600. doi.org/10.1016/j.bej.2022.108600.
11.Liu, H.T., Weng, C. Y., Xu, S. Y., Li, S. F., Wang, Y. J.*, Zheng, Y. G. Directed evolution of a carbonyl reductase LsCR for the enantioselective synthesis of (1S)-2-Chloro-1-(3,4-difluorophenyl) ethanol. Bioorganic Chemistry, 2022, 127: 105991. doi.org/10.1016/j.bioorg.2022.105991.
12.Cheng, F., Xie, W. B., Gao, X. F., Chu, R. L., Xu, S. Y., Wang, Y. J.*, Zheng, Y. G. Development of a new chemo-enzymatic catalytic route for synthesis of (S)-2-chlorophenylglycine. Journal of Biotechnology, 2022, 358: 17-24. doi.org/10.1016/j.jbiotec.2022.08.013.
13.Li, S. F., Xu, S.Y., Wang, Y. J.*, Zheng, Y. G. Tailoring pullulanase PulAR from Anoxybacillus sp. AR-29 for enhanced catalytic performance by a structure-guided consensus approach. Bioresources and Bioprocessing, 2022, 9: 25.
14.Pan, Z. T., Liu, T., Ma, Y. M., Yan, J. B., Wang, Y. J.*. Construction of quinazolin(thi)ones by brønsted acid/visible-light photoredox relay catalysis. Chinese Journal of Chemistry, 2022, 42 (9): 2823-2831. doi: 10.6023/cjoc202206001.
15.Cheng F., Chen Y., Qiu S., Zhai Q. Y., Liu, H. T., Li, S. F., Weng, C. Y., Wang, Y. J.*, Zheng, Y. G. Controlling stereopreference of carbonyl reductases for enantioselective synthesis of atorvastatin precursor. ACS Catalysis, 2021, 11 (5): 2572–2582. doi.org/10.1021/acscatal.0c05607.
16.Cheng, F., Zhai, Q. Y., Gao, X. F., Liu, H. T., Qiu, S., Wang, Y. J.*, Zheng, Y. G. Tuning enzymatic properties by protein engineering toward catalytic residues in carbonyl reductase. Biotechnology and Bioengineering, 2021, 118(12): 4643-4654. doi: 10.1002/bit.27925.
17.Li, S. F., Xie, J. Y., Qiu, S., Xu, S. Y., Cheng, F., Wang, Y. J.*, Zheng, Y. G. Semi-rational engineering of an aldo-keto reductase KmAKR for overcoming trade-offs between catalytic activity and thermostability. Biotechnology and Bioengineering, 2021, 118 (11): 4441-4452. DOI: 10.1002/bit.27913.
18.Qiu, S., Xu, S. Y., Li, S. F., Meng, K. M., Chen, F., Wang, Y. J.*, Zheng, Y. G. Fluorescence-based screening for engineered aldo-keto reductase KmAKR with extended substrate scope and improved catalytic performance. Biotechnology Journal, 2021, 16 (9): 2100130. DOI:10.1002/biot.202100130.
19.Weng, C. Y., Wang, C. E., Xie, W. B., Xu, S. Y., Wang, Y. J.*, Zheng, Y. G. Comparative proteome analysis of Actinoplanes utahensis grown on various saccharides based on 2D-DIGE and MALDI-TOF/TOF-MS. Journal of Proteomics, 2021, 239: 104193. doi.org/10.1016/j.jprot.2021.104193.
20.Li, S. F., Xie, J. Y., Qiu, S., Zhou, S. Y., Wang, Y. J.*, Zheng, Y. G. Tailoring an aldo-keto reductase KmAKR for robust thermostability and catalytic efficiency by stepwise evolution and structure-guided consensus engineering. Bioorganic Chemistry, 2021, 109: 104712. doi.org/10.1016/j.bioorg.2021.104712.
21.Weng, C. Y., Wang, D. N., Ban, S. Y., Zhai, Q. Y. Hu, X. Y., Cheng, F., Wang, Y. J.*, Zheng, Y. G. One-step eantioselective bioresolution for (S)-2-chlorophenylglycine methyl ester catalyzed by the immobilized Protease 6SD on multi-walled carbon nanotubes in a triphasic system. Journal of Biotechnology, 2021, 325: 294-302. doi.org/10.1016/j.jbiotec.2020.10.007.
授权专利
1. 王亚军, 程峰, 邱帅, 李树芳, 郑裕国. 醛酮还原酶KmAKR突变体及其催化合成手性醇的应用. ZL 202110136118.7.
2. 王亚军, 翁春跃, 王丹娜, 程峰, 郑裕国. 一种 (S)-邻氯苯甘氨酸甲酯酶法合成方法. ZL 202010641943.8.
3. 王亚军, 班善赟, 程峰, 翁春跃, 郑裕国. 一种脂肪酶突变体及其在制备(S)-2-氯苯甘氨酸甲酯中的应用. ZL 202010036222.4.
4. 王亚军, 程峰, 陈祎, 郑裕国. 一种改造羰基还原酶立体选择性的方法、羰基还原酶突变体及应用.中国发明专利ZL 202010521676.0.
5. 王亚军, 邱帅, 李树芳, 程峰, 翁春跃, 郑裕国. 马克斯克鲁维酵母醛酮还原酶KmAKR突变体及其应用. 中国发明专利ZL 201910932502.0.
6. 王亚军, 喻寒, 邱帅, 程峰, 郑裕国. 一种醛酮还原酶突变体及应用. 中国发明专利ZL 201910072740.9.
7. 王亚军, 程英男, 邹树平, 郑裕国. 一种重组棘白菌素B脱酰基酶突变体及应用. 中国发明专利ZL 201910155559.4.
8. 王亚军, 沈炜, 喻寒, 柳志强, 郑裕国. 醛酮还原酶突变体及其应用. 中国发明专利ZL 201810812118.2.
9. 王亚军, 应彬彬, 郑裕国, 沈炜, 喻寒, 程英男. 一种重组醛酮还原酶突变体、基因、载体、工程菌及其应用. 中国发明专利ZL 201710282633.X.
10.王亚军, 罗希, 沈炜, 郑裕国. 一种醛酮还原酶突变体、基因、工程菌及其应用. 中国发明专利ZL 201610124451.5.