论文:
[20] Wang X., Li J., Pan X. How micro-/nano-plastics influence the horizontal transfer of antibiotic resistance genes - A review. Science of the Total Environment, 2024, 944: 173881.
[19] Wang X., Li J., Pan X. Polysaccharide preferred minority-dominant community assembly and exoenzyme enrichment in transparent exopolymer particles: Implication for global carbon cycle in water. Science of the Total Environment, 2024, 914: 169976.
[18] Yu C., Peng M., Wang X., Pan X. (2024). Photochemical demethylation of methylmercury (MeHg) in aquatic systems: A review of MeHg species, mechanisms, and influencing factors. Environmental Pollution, 344, 123297.
[17] Zhou Q., Zhang J., Fang Q., Zhang M., Wang X., Zhang D., Pan X. (2023). Microplastic biodegradability dependent responses of plastisphere antibiotic resistance to simulated freshwater-seawater shift in onshore marine aquaculture zones. Environmental Pollution, 331, 121828.
[16] Wang X., Du G., Qiao Z., Yang Y., Shi H., Zhang D., Pan X. (2023). Environmental concentrations of surfactants as a trigger for climax of horizonal gene transfer of antibiotic resistance. Heliyon, 9(6): e17034.
[15] Lou Z., Xu H., Xia L., Lin W., Dai Z., Wang X.* Enhanced freeze-thaw cycles facilitate the antibiotic resistance proliferation and dissemination risk under global climate change. Process Safety and Environmental Protection, 2023, 175: 119-128.
[14] Zhou Q., Zhang J., Zhang M., Wang X., Zhang D., Pan X. (2022). Persistent versus transient, and conventional plastic versus biodegradable plastic?-Two key questions about microplastic-water exchange of antibiotic resistance genes. Water research, 222, 118899.
[13] Luo H., Cheng Q., Fan Q., He D., Wang X., Sun J., Pan X. (2022). FT-IR and synchronous fluorescence two-dimensional correlation spectroscopic analysis on the binding properties of mercury onto humic acids as influenced by pH modification and sulfide addition. Science of The Total Environment, 819, 152047.
[12] Luo H., Cheng Q., He D., Wang X., Pan X. (2022). Effects of photo-irradiation on mercury binding to dissolved organic matter: Insights from FT-IR and synchronous fluorescence two-dimensional correlation spectroscopy. Chemosphere, 287, 132027.
[11] Zhang S., Qiang J., Liu, H., Wang X., Zhou J., Fan D. (2022). An adaptive dynamic kriging surrogate model for application to the optimal remediation of contaminated groundwater. Water Resources Management, 36(13), 5011-5032.
[10] Wang Z., Tan W., Yang D., Zhang K., Zhao L., Xie Z., .Xu T., Zhao Y., Wang X., Pan X., Zhang D. (2021). Mitigation of soil salinization and alkalization by bacterium-induced inhibition of evaporation and salt crystallization. Science of the Total Environment, 755, 142511.
[9] Wang X., Liu B., Pan X., Gadd G.M. (2019). Transport and retention of biogenic selenium nanoparticles in biofilm-coated quartz sand porous media and consequence for elemental mercury immobilization. Science of The Total Environment, 692, 1116-1124.
[8] Wang X., Pan X., Gadd G.M. (2019). Immobilization of elemental mercury by biogenic Se nanoparticles in soils of varying salinity. Science of The Total Environment, 668, 303-309.
[7] Wang X., Wang S., Pan X., Gadd G.M. (2019). Heteroaggregation of soil particulate organic matter and biogenic selenium nanoparticles for remediation of elemental mercury contamination. Chemosphere, 221, 486-492.
[6] Wang X., Pan X., Gadd G.M. (2019). Soil dissolved organic matter affects mercury immobilization by biogenic selenium nanoparticles. Science of The Total Environment, 658, 8-15.
[5] Wang X., Song W., Qian H., Zhang D., Pan X., Gadd G.M. (2018). Stabilizing interaction of exopolymers with nano-Se and impact on mercury immobilization in soil and groundwater. Environmental Science: Nano. 5, 456-466
[4] He Z., Feng Y., Zhang S., Wang X., Wu S., Pan X. (2018). Oxygenic denitrification for nitrogen removal with less greenhouse gas emissions: microbiology and potential applications. Science of the Total Environment, 621, 453-464.
[3] Wang X., He Z., Luo H., Zhang M., Zhang D., Pan X., Gadd G.M. (2018). Multiple-pathway remediation of mercury contamination by a versatile selenite-reducing bacterium. Science of The Total Environment, 615, 615-623.
[2] Wang X., Zhang D., Qian H., Liang Y., Pan X, Gadd G.M. (2018). Interactions between biogenic selenium nanoparticles and goethite colloids and consequence for remediation of elemental mercury contaminated groundwater. Science of The Total Environment, 613, 672-678.
[1] Wang X., Zhang D., Pan X., Lee D.J., Al-Misned F.A., Mortuza M.G., Gadd G.M. (2017). Aerobic and anaerobic biosynthesis of nano-selenium for remediation of mercury contaminated soil. Chemosphere, 170, 266-273.
专利:
[14] 王潇男;郑洁琰;何烨晨;孙悦;张道勇;潘响亮. 一种天然水体中胞内外DNA精准提取分离的方法. 申请号:CN 202310284789.7
[13] 王潇男;杜高全;潘响亮. 一种利用枯草芽孢杆菌结晶控盐技术改良盐碱土壤的方法. 申请号:CN 202210225215.8
[12] 王潇男;石会敏;杜高全;乔壮;郑洁琰;杨登琴;张道勇;潘响亮. 一种硫化矿物表面原位快速成膜-钝化-抑制产酸的方法. 专利号:ZL 202111260936.4
[11] 王潇男;郑洁琰;范丽俊;潘响亮. 基于硫化矿物表面原位快速成膜的矿物氧化产酸抑制方法. 专利号:ZL 202110776579.0
[10] 叶志平;余生水;王潇男;任凌伟. 用于尾矿修复的微生物胶囊及三位一体尾矿原位修复方法. 专利号:ZL 202110212546.3
[9] 张道勇;马超杰;王潇男;祝鹏烽. 一种利用蓝藻-生物膜复合体修复盐碱水体砷污染的方法. 专利号:ZL 202010753156.2
[8] 张道勇;葛昶;潘响亮;王子艳;王潇男. 一种利用枯草芽孢杆菌改良盐碱土和保肥的方法. 专利号:ZL 202010433153.0
[7] 张道勇;王文艺;王潇男;潘响亮. 一种利用纺锤形赖氨酸芽孢杆菌和生石灰矿化固定尾矿重金属的方法. 申请号:CN 202010205601.1
[6] 王子艳;张道勇;王潇男;潘响亮. 一种利用枯草芽孢杆菌延缓土壤盐结晶的方法. 专利号:ZL 2020100382029.2
[5] 潘响亮;王潇男;宋文娟. 利用大肠杆菌在好氧和厌氧条件下净化污水中硒和汞的方法. 专利号:ZL 201610307737.7
[4] 潘响亮;王潇男;宋文娟. 一种利用大肠杆菌处理水中汞的方法. 专利号:ZL 201610012491.0
[3] 潘响亮;王潇男;宋文娟. 一种利用好氧菌异化还原产物矿化土壤汞的方法. 专利号:ZL 201510351884.X
[2] 潘响亮;王潇男;宋文娟. 一种厌氧条件下细菌固化土壤汞的方法. 专利号:ZL 201510351365.3
[1] 潘响亮;王潇男;高磊. 利用柠檬酸杆菌厌氧和好氧下净化含四价硒污水的方法. 专利号:ZL 201410650816.9