1. Aijun Yang, J. Henderson and H. L. Wang, Parameter dependence for existence, nonexistence and multiplicity of nontrivial solutions for an Atıcı–Eloe fractional difference Lidstone BVP, Electron. J. Qual. Theory Differ. Equ., 2017, 38: 1-12. (SCI)
2. Aijun Yang*, Li Zhang and Johnny Henderson, COMPARISON OF SMALLEST EIGENVALUES FOR RIGHT FOCAL ATICI-ELOE FRACTIONAL DIFFERENCE EQUATIONS, J. Korean Soc. Math. Educ. Ser. B: Pure Appl. Math., 2017, 24(4): 191–200.
3. Aijun Yang, J. Henderson and D. J. Wang, The study of higher-order resonant and non-resonant boundary value problems, E. J. Qualitative Theory of Diff. Equ., 2016, 3: 1-10. (SCI)
4. Aijun Yang, J. Henderson and C. Nelms JR., Extremal points for a higher-order fractional boundary value problem, Electronic Journal of Differential Equations, Vol. 2015 (2015), No. 161, pp. 1-12. (SCI)
5. Aijun Yang and J. Henderson, Comparison of smallest eigenvalues for fractional difference equations, Enlightenment of Pure and Applied Mathematics, 2016, 2(2): 161-170.
6. J. Henderson, R. Luca, C. Nelms JR. and Aijun Yang, Positive Solutions for a Singular Third Order Boundary Value Problem, Differential Equations & Applications, Vol.7, No. 4 (2015), 437–447. (SCI)
7. Aijun Yang, H. L. Wang, Periodic solutions for a kind of higher-order neutral functional differential equation with variable parameter, Advances in Difference Equations, 2014, 2014:187. (SCI)
8. Aijun Yang, H. L. Wang and D. J. Wang, The unique solution for periodic differential equations with upper and lower solutions in reverse order, Boundary Value Problems, 2013: 88. (SCI)
9. 杨爱军,王河林,The unique solution for periodic differential equations with upper and lower solutions in reverse order,浙江工业大学学报, 2013, 6 (41) : 690-694.
10. 杨爱军,张莉,王定江,高维分数阶非线性微分系统正解的存在性,数学的实践与认识, 2013, 43(14): 289-294.
11. Aijun Yang,An extension of Leggett-Williams norm-type theorem for coincidences and its application,Topological Methods in Nonlinear Analysis, Journal of the Juliusz Schauder Center,2011, 37: 177-191. (SCI)
12. Aijun Yang and H. L. Wang, Positive solutions of two-point boundary value problems of nonlinear fractional differential equation at resonance, E. J. Qualitative Theory of Diff. Equ., 2011, 71: 1-15. (SCI)
13. Aijun Yang and H. L. Wang, Positive solutions for higher-order nonlinear fractional differential equation with integral boundary condition, E. J. Qualitative Theory of Diff. Equ., 2011, 1: 1-15. (SCI)
14. Aijun Yang, B. Sun and W. G. Ge, Existence of positive solutions for self-adjoint boundary value problems with integral boundary conditions at resonance, Electron. J. Diff. Equ., 2011, 11: 1-8. (SCI)
15. Aijun Yang, H. L. Wang, Symmetric solutions for a fourth-order multi-point boundary value problems with one-dimensional p-Laplacian at resonance, J. Appl. Math. & Informatics, Vol. 28 (2011), No. 5 - 6, pp. 1 – 11.
16. Aijun Yang and W. G. Ge, The monotone method for periodic differential equations with the non well-ordered upper and lower solutions, J. Comput. Appl. Math., 2009, 232: 632-637. (SCI)
17. Aijun Yang, C. M. Miao and W. G. Ge, Solvability for second-order nonlocal boundary value problems with a p-Laplacian at resonance on a half-line, E. J. Qualitative Theory of Diff. Equ., 2009, 19: 1-15. (SCI)
18. Aijun Yang and W. G. Ge, Positive solutions of multi-point boundary value problems with multivalued operators at resonance, J. Appl. Math. Comput., 2009, 31, 359-368. (EI)
19. Aijun Yang and W. G. Ge, Existence of symmetric solutions for a fourth-order multi-point boundary value problem with a p-Laplacian at resonance, J. Appl. Math. Comput., 2009, 29(1): 301-309. (EI)
20. Aijun Yang, Z. G. Zhang and W. G. Ge, Existence of nonoscillatory solutions of second-order nonlinear neutral differential equations, Indian J. Pure. Appl. Math., 2008, 39: 227-235. (SCI)
21. Aijun Yang and W. G. Ge, Positive solutions for boundary value problems of N-dimension nonlinear fractional differential system, Boundary Value Problems, 2008, 437453. (SCI)
22. Aijun Yang and W. G. Ge, Positive solutions of self-adjoint boundary value problem with integral boundary conditions at resonance, J. Korea Sco. Math. Educ. Ser. B: Pure Appl. Math. 2008, 15(4): 407-414.
23. Aijun Yang and W. G. Ge, Positive solutions of multi-point boundary value problems of nonlinear fractional differential equation at resonance, J. Korea Sco. Math. Educ. Ser. B: Pure Appl. Math., 2009, 16(2): 181-193.
24. Aijun Yang and W. G. Ge, Positive solutions for second-order boundary value problem with integral boundary conditions at resonance on a half-line, J. Inequal. Pure and Appl. Math., 2009, 10(1): 1-10.
25. Aijun Yang and W. G. Ge, Second-order boundary value problem with integral boundary conditions on an unbounded domain at resonance, J. Korea Sco. Math. Educ. Ser. B: Pure Appl. Math.,2010, 17(1).
26. 杨爱军,二阶共振周期边值问题多解的存在性,数学的实践与认识,2008, 38(24): 240-245; MR2523199. 27. B. Sun, Aijun Yang and W. G. Ge, Successive iteration and positive solutions for some second-order three-point p-laplacian boundary value problems, Math. Comp. Mod., 2009, 50: 344-350. (SCI)
28. Z. G. Zhang and Aijun Yang, Existence of positive solutions of second-order nonlinear neutral differential equations with positive and negative terms, J. Appl. Math. Comput., 2007, 25: 245-153. (EI)
29. Z. G. Zhang and Aijun Yang, Oscillation and nonoscillation of higher-order difference equations with nonlinear neutral terms, J. Korea Sco. Math. Educ. Ser. B: Pure Appl. Math. 2007 14(2): 49-62.
30. B. Sun and Aijun Yang, Existence of triple positive solutions to a multi-point boundary value problem, Ann. of Diff. Eqs., 27:2(2011); 201-206.