[1] Fengle Zhu, Zhuangfei Zhou, Yuecheng Shen, Mengzhu He, Jianuo Jiang, Xin Qiao*, Jiyu Peng*, Yong He. A 3D spectral compensation method on close-range hyperspectral imagery of plant canopies[J]. Computers and Electronics in Agriculture. 2025, 231: 109955. (SCI中科院一区, IF=7.7)
[2] Fengle Zhu, Jian Wang, Yuqian Zhang, Jiang Shi, Mengzhu He, Zhangfeng Zhao*. An improved 3D-SwinT-CNN network to evaluate the fermentation degree of black tea[J]. Food Control. 2025, 167: 110756. (SCI中科院一区, IF=5.6)
[3] Fengle Zhu, Huan Yao, Yuecheng Shen, Yuqian Zhang, Xiaoli Li, Jiang Shi, Zhangfeng Zhao*. Information fusion of hyperspectral imaging and self-developed electronic nose for evaluating the degree of black tea fermentation[J]. Journal of Food Composition and Analysis. 2025, 137: 106859. (SCI中科院二区, IF=4.0)
[4] Fengle Zhu, Yuqian Zhang, Jian Wang, Xiangdong Luo, Dengtao Liu, Kaicheng Jin, Jiyu Peng*. An improved deep convolutional generative adversarial network for quantification of catechins in fermented black tea[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy. 2025, 327: 125357. (SCI中科院二区, IF=4.3)
[5] Fengle Zhu, Xin Qiao*, Yuqian Zhang, Jiandong Jiang*. Analysis and mitigation of illumination influences on canopy close-range hyperspectral imaging for the in situ detection of chlorophyll distribution of basil crops[J]. Computers and Electronics in Agriculture. 2024, 217: 108553. (SCI中科院一区, IF=7.7)
[6] Fengle Zhu, Jian Wang, Ping Lv, Xin Qiao, Mengzhu He, Yong He, Zhangfeng Zhao*. Generating labeled samples based on improved cDCGAN for hyperspectral data augmentation: A case study of drought stress identification of strawberry leaves[J]. Computers and Electronics in Agriculture. 2024, 225: 109250. (SCI中科院一区, IF=7.7)
[7] Jiyu Peng, Longfei Ye, Yifan Liu, Fei Zhou, Linjie Xu, Fengle Zhu*, Jing Huang, Fei Liu*. Characterization of the distribution of mineral elements in chromium-stressed rice (Oryza sativa L.) leaves based on laser-induced breakdown spectroscopy and data augmentation[J]. Spectrochimica Acta Part B: Atomic Spectroscopy. 2024, 222: 107072. (SCI中科院二区, IF=3.2)
[8] Fengle Zhu#, Zhenzhu Su#, Alireza Sanaeifar, Anand Babu Perumal, Mostafa Gouda, Ruiqing Zhou, Xiaoli Li*, Yong He. Fingerprint spectral signatures revealing the spatiotemporal dynamics of bipolaris spot blotch progression for presymptomatic diagnosis[J]. Engineering. 2023, 22: 171-184. (SCI中科院一区,中国工程院院刊, IF=10.1)
[9] Xuelun Luo, Chanjun Sun, Yong He, Fengle Zhu*, Xiaoli Li*. Cross-cultivar prediction of quality indicators of tea based on VIS-NIR hyperspectral imaging[J]. Industrial Crops & Products. 2023, 202: 117009. (SCI中科院一区, IF=5.6)
[10] Haibo Yao*, Fengle Zhu*, Russell Kincaid, Zuzana Hruska, Kanniah Rajasekaran. A low-cost, portable device for detecting and sorting aflatoxin-contaminated maize kernels[J]. Toxins. 2023, 15(3): article ID 197. (SCI中科院二区, IF=3.9)
[11] 朱逢乐,刘益,乔欣,何梦竹,郑增威,孙霖. 基于多尺度级联卷积神经网络的高光谱图像分析[J]. 吉林大学学报(工学版), 2023, 53(12). (EI)
[12] Fengle Zhu, Jianping Cai, Mengzhu He, Xiaoli Li*. Channel and band attention embedded 3D CNN for model development of hyperspectral image in object-scale analysis[J]. Chemometrics and Intelligent Laboratory Systems. 2022, 224: article ID 104537. (SCI中科院二区, IF=3.7)
[13] Zengwei Zheng, YiLiu, MengzhuHe, DanChen, Lin Sun, Fengle Zhu*. Effective band selection of hyperspectral image by attention mechanism-based convolutional network[J]. RSC Advances. 2022, 12(14): 8750-8759. (SCI中科院三区, IF=3.9)
[14] 朱逢乐, 严霜, 孙霖*, 何梦竹, 郑增威, 乔欣.基于深度学习多源数据融合的生菜表型参数估算方法[J].农业工程学报. 2022, 38(9): 195-204. (EI)
[15] Alireza Sanaeifar#, Fengle Zhu#, Junjing Sha, Xiaoli Li*, Yong He, Zhihao Zhan. Rapid quantitative characterization of tea seedlings under lead-containing aerosol particles stress using Vis-NIR spectra[J]. Science of the Total Environment. 2022, 802: article ID 149824. (SCI中科院一区, IF=8.2)
[16] Fengle Zhu, Mengzhu He, Zengwei Zheng*. Data augmentation using improved cDCGAN for plant vigor rating[J]. Computers and Electronics in Agriculture. 2020, 175: article ID 105603. (SCI中科院一区, IF=7.7)
[17] Fengle Zhu, Zengwei Zheng*. Image-based assessment of growth vigor for Phalaenopsis aphrodite seedlings using convolutional neural network[J]. 农业工程学报. 2020, 36(9): 185-194. (EI)