主办学术会议:
● 2024杭州热核及其相关问题研讨会
● 2023杭州调和分析及其应应会议
● 2021杭州调和分析及其应用研讨会
研究领域:
研究领域为调和分析及其应用,主要为如下三个方向:
1. 与算子相关的调和分析。这一方向起源于变系数调和分析的发展,其研究动机之一为对著名的Kato平方根问题的解决。1953年日本数学家T. Kato提出猜想:一个复系数的椭圆算子的平方根等于Sobolev空间W^{1,2}。这一猜想于2002年被法国数学家P. Auscher等五位数学家合力解决。在这些工作中人们认识到经典的调和分析中由Calderón-Zymund创立的奇异积分C-Z理论本质上是依赖于Laplace算子的。为了处理与更一般的微分算子(例如椭圆算子、薛定谔算子等)相关的问题,与算子相关的调和分析便迅速发展起来。从进入北师大读研期间,主要关注这一方向的发展,目前在这一方向发表的论文如下。
● Gaussian estimates for heat kernels of higher order Schrödinger operators with potentials in generalized Schechter classes, with Liu, Yu; Yang, Dachun; Zhang, Chao J. Lond. Math. Soc. (2) 106 (2022), no. 3, 2136–2192.
●Weighted local Orlicz-Hardy spaces on domains and their applications in inhomogeneous Dirichlet and Neumann problems,with Chang, Der-Chen; Yang, Dachun; Yang, Sibei, Trans. Amer. Math. Soc. 365 (2013), no. 9, 4729–4809.
● Local Hardy spaces associated with inhomogeneous higher order elliptic operators, with Mayboroda, Svitlana; Yang, Dachun Anal. Appl. (Singap.) 15 (2017), no. 2, 137–224.
● Maximal function characterizations of Hardy spaces associated to homogeneous higher order elliptic operators, with Mayboroda, Svitlana; Yang, Dachun Forum Math. 28 (2016), no. 5, 823–856.
● Hardy spaces HpL(Rn) associated with operators satisfying k -Davies-Gaffney estimates , with Yang, DaChun Sci. China Math. 55 (2012), no. 7, 1403–1440.
● Non-tangential maximal function characterizations of Hardy spaces associated with degenerate elliptic operators, with Zhang, Junqiang; Jiang, Renjin; Yang, Dachun Canad. J. Math. 67 (2015), no. 5, 1161–1200.
● Hardy spaces associated with a pair of commuting operator, with; Fu Zunwei; Jiang, Renjin; Yang, Dachun Forum Math. 27 (2015), no. 5, 2775–2824.
● Weak Hardy spaces WHpL(Rn) associated to operators satisfying k -Davies-Gaffney estimates, with Chang, Der-Chen; Wu, Huoxiong; Yang, Dachun J. Nonlinear Convex Anal. 16 (2015), no. 7, 1205–1255.
● Estimates for second-order Riesz transforms associated with magnetic Schrödinger operators on Musielak-Orlicz-Hardy spaces, with Chang, Der-Chen; Yang, Dachun; Yang, Sibei Appl. Anal. 93 (2014), no. 11, 2519–2545.
● Boundedness of second order Riesz transforms associated to Schrödinger operators on Musielak-Orlicz-Hardy space, with Chang, Der-Chen; Yang, Dachun; Yang, Sibei Commun. Pure Appl. Anal. 13 (2014), no. 4, 1435–1463.
● Musielak-Orlicz-Hardy spaces associated with operators satisfying reinforced off-diagonal estimates , with Bui, The Anh; Ky, Luong Dang; Yang, Dachun; Yang, Sibei Anal. Geom. Metr. Spaces 1 (2013), 69–129.
● Weighted Hardy spaces associated with operators satisfying reinforced off-diagonal estimates, with The Anh Bui; Ky, Luong Dang; Yang, Dachun; Yang, Sibei Taiwanese J. Math. 17 (2013), no. 4, 1127–1166.
● Boundedness of generalized Riesz transforms on Orlicz-Hardy spaces associated to operators , with Chang, Der-Chen; Yang, Dachun; Yang, Sibei Integral Equations Operator Theory 76 (2013), no. 2, 225–283.
● Endpoint boundedness of Riesz transforms on Hardy spaces associated with operators, with Yang, Dachun; Yang, Sibei Rev. Mat. Complut. 26 (2013), no. 1, 99–114.
● Hardy spaces H1L(Rn) associated to Schrödinger type operators (−Δ)2+V2, with Liu, Yu; Yang, Dachun Houston J. Math. 36 (2010), no. 4, 1067–1095.
2. 经典函数空间中问题。函数空间是调和分析中的一个核心研究领域,其基本的观点便是通过为数学与物理中的相关问题提供工作空间,从而将相关问题转化为相应算子在合适的函数空间中的有界性问题。函数空间理论在经过德国Jena学派 H. Triebel等人的发展形成体系,并在国内由北师大杨大春教授及其合作者进一步发展成熟。一方面在经典调和分析里面目前仍有很多重要的问题尚未解决,另一方面其它学科方向产生的进展也源源不断地为这个领域带来新的问题。从读博开始关注这一方向的发展,目前在这一方向发表的论文如下。
● Fractional Besov spaces and Hardy inequalities on bounded non-smooth domains Journal, with Jin, Yongyang; Yu, Zhuonan; Zhang, Qishun. Annali di Matematica Pura ed Applicata, (1) 203, 2024.
● Multiplication between Hardy spaces and their dual spaces, with Bonami, Aline; Ky, Luong Dang; Liu, Liguang; Yang, Dachun; Yuan, Wen. J. Math. Pures Appl. (9) 131 (2019), 130–170.
● Riesz transform characterizations of Musielak-Orlicz-Hardy spaces, with Chang, Der-Chen; Yang, Dachun; Yang, Sibei Trans. Amer. Math. Soc. 368 (2016), no. 10, 6979–7018.
● Intrinsic structures of certain Musielak-Orlicz Hardy spaces, with Liu, Liguang; Yang, Dachun; Yuan, Wen J. Geom. Anal. 28 (2018), no. 4, 2961–2983.
● Local potential operator and uniform resolvent estimate for generalized Schrödinger operator in Orlicz spaces, with Dou, Xiaoshen; Gao, Mengyao; Jin, Yongyang Math. Nachr. 296 (2023), no. 10, 4533–4558.
● Boundedness of fractional integrals on weighted Orlicz-Hardy spaces, with Chang, Der-Chen; Yang, Dachun; Yang, Sibei Math. Methods Appl. Sci. 36 (2013), no. 15, 2069–2085.
● Real interpolation of weighted tent spaces, with Chang, Der-Chen; Fu, Zunwei; Yang, Dachun Appl. Anal. 95 (2016), no. 11, 2415–2443.
● Bilinear decompositions of products of local Hardy and Lipschitz or BMO spaces through wavelets, with Ky, Luong Dang; Yang, Dachun Commun. Contemp. Math. 20 (2018), no. 3, 1750025, 30 pp.
3. 热核及其相关问题。 热核是现代分析与几何中的基本工具,美国数学家、布尔巴基学派成员 S. Lang 教授曾评价说:热核在数学中无处不在(ubiquitous)。 在现代几何和分析理论中,热核往往成为连接底空间几何和其上分析结构的桥梁,由此为在不同几何背景下搭建分析结构提供重要工具。近年来,开始关注这一方向的发展,目前在这一方向发表的论文如下。
● Heat kernels and Besov spaces associated with second order divergence form elliptic operators, with Grigor'yan, Alexander J. Fourier Anal. Appl. 26 (2020), no. 1, Paper No. 3.
● Hardy's inequality and Green function on metric measure spaces, with Grigor'yan, Alexander; Liu, Liguang J. Funct. Anal. 281 (2021), no. 3, Paper No. 109020, 78 pp.
● Heat kernels and Besov spaces on metric measure spaces, with Grigor'yan, Alexander J. Anal. Math. 148 (2022), no. 2, 637–680.
● Characterizations of weighted Hardy-Rellich inequalities and their applications, with Jin, Yongyang; Shen, Shoufeng; Wu, Yurong Math. Inequal. Appl. 23 (2020), no. 3, 873–893.